Skip to main content
Log in

Modification of Peng–Robinson Cubic Equation of State with Correction of the Temperature Dependency Term

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Equations of state (EoSs) have always been one the most interesting field of study for scientists and engineers, due to their extensive applications in various industries and scientific research. Accordingly, scientists have extensively studied useful modifications of the original EoSs. In this study, the temperature dependent part of the Peng–Robinson cubic equation of state is modified. The new dual parameter α-function is able reproduce the vapor pressure data accurately for a large variety of pure components. Mono-atomic and di-atomic molecules, hydrocarbons, polar and associating compounds are well represented by the Peng–Robinson–Saali equation of state with negligible deviation with experimental data. Moreover, the thermodynamic consistency test of P–T–x solubility data based on the fundamental Gibbs–Duhem equation, for binary mixtures including acid gases (CO2 and H2S)/polar and associating solvents at low and high pressure were also investigated. The proposed EoS coupled with a three-parameter binary interaction term, namely the Panagiotopoulos–Reid mixing rule, was used in order to present the PR–Saali EoS as a versatile equation for analyzing thermodynamic consistency of experimental data. Modeling processes were carried out by using MATLAB 2018a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 52, 31–38 (1989)

    Article  CAS  Google Scholar 

  2. van der Waals, J.D.: On the continuity of the gaseous and liquid states. Doctoral dissertation. Universiteit Leiden (1873)

  3. Soave, G.: Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  CAS  Google Scholar 

  4. Robinson, D.B., Peng D.Y.: The characterization of the heptanes and heavier fractions for the gpa peng-robinson programs, research report (Gas Processors Association). Gas Processors Association (1978)

  5. Stryjek, R., Vera, J.H.: PRSV: an improved Peng–Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng. 64, 560–570 (1986)

    Article  Google Scholar 

  6. Yokozeki, A.: Solubility of refrigerants in various lubricants. Int. J. Thermophys. 22, 1057–1071 (2001)

    Article  CAS  Google Scholar 

  7. Kud, A., Korkel, S., Maixner, S.: A cubic equation of state based on saturated vapor modeling and the application of model-based design of experiments for its validation. Chem. Eng. Sci. 65, 4194–4207 (2010)

    Article  CAS  Google Scholar 

  8. Gasem, K.A.M., Gao, W., Pan, Z., Robinson, R.L., Jr.: A modified temperature dependence for the Peng–Robinson equation of state. Fluid Phase Equilib. 25, 113–125 (2001)

    Article  Google Scholar 

  9. Mathias, P.M., Copeman, T.W.: Extension of the Peng–Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Phase Equilib. 13, 91–108 (1983)

    Article  CAS  Google Scholar 

  10. Kwak, T.Y., Mansoori, G.A.: Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling. Chem. Eng. Sci. 41, 1303–1309 (1986)

    Article  CAS  Google Scholar 

  11. Melhem, G., Saini, A.R., Goodwin, B.M.: A modified Peng–Robinson equation of state. Fluid Phase Equilib. 47, 189–237 (1989)

    Article  CAS  Google Scholar 

  12. Søreide, I., Whitson, C.H.: Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine. Fluid Phase Equilib. 77, 217–240 (1992)

    Article  Google Scholar 

  13. Fotouh, K., Shukla, K.: An improved Peng–Robinson equation of state with a new temperature dependent attractive term. Chem. Eng. Commun. 159, 209–229 (1997)

    Article  CAS  Google Scholar 

  14. Floter, E.T., De Loos, W., de Swaan Arons, J.: Improved modeling of the phase behavior of asymmetric hydrocarbon mixtures with the Peng−Robinson equation of state using a different temperature dependency of the parameter a. Ind. Eng. Chem. Res. 37, 1651–1662 (1998)

    Article  Google Scholar 

  15. Tsai, J.C., Chen, Y.P.: Application of a volume-translated Peng–Robinson equation of state on vapor–liquid equilibrium calculations. Fluid Phase Equilib. 145, 193–215 (1998)

    Article  CAS  Google Scholar 

  16. Catano-Barrera, A.M., Figueira, F.L., Olivera-Fuentes, C., Colina, C.M.: Correlation and prediction of fluid–fluid equilibria of carbon dioxide–aromatics and carbon dioxide–dichlorobenzoates binary mixtures. Fluid Phase Equilib. 311, 45–53 (2011)

    Article  CAS  Google Scholar 

  17. Faradonbeh, M.R., Bahramian, A., Masoudi, R.: In: CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Society of Petroleum Engineers, pp.1–11 (2008)

  18. Valiollahi, S., Kavianpour, B., Raeissi, S., Moshfeghian, M.: A new Peng–Robinson modification to enhance dew point estimations of natural gases. J. Nat. Gas Sci. Eng. 34, 1137–1147 (2016)

    Article  Google Scholar 

  19. Van der Stelta, T.P., Nannan, N.R., Colonna, P.: The iPRSV equation of state. Fluid Phase Equilib. 330, 24–35 (2012)

    Article  Google Scholar 

  20. Kaviani, S., Feyzi, F., Khosravi, B.: Modification of the Peng–Robinson equation of state for helium in low temperature regions. Fluid Phase Equilib. 54, 542–551 (2016)

    CAS  Google Scholar 

  21. Hosseinifar, P., Jamshidi, S.: An evolved cubic equation of state with a new attractive term. Fluid Phase Equilib. 408, 58–71 (2016)

    Article  CAS  Google Scholar 

  22. NIST Scientific and Technical Databases, Thermophysical Properties of Fluid Systems. https://webbook.nist.gov/chemistry/fluid/. Accessed Dec 2018

  23. Dortmund Data Bank Software and Separation Technology. http://www.ddbst.com/free-data.html. Accessed Dec 2018

  24. Gross, J., Sadowski, G.: Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  CAS  Google Scholar 

  25. Panagiotopoulos, A.Z., Reid, R.C.: New mixing rule for cubic equations of state for highly polar, asymmetric systems. ACS Symp. Ser. 300, 571–582 (1986)

    Article  CAS  Google Scholar 

  26. Valderrama, J.O., Faúndez, C.A.: Thermodynamic consistency test of high pressure gas–liquid equilibrium data including both phases. Thermochim. Acta 499, 85–90 (2010)

    Article  CAS  Google Scholar 

  27. Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Thermodynamic consistency test for experimental data of sulfur content of hydrogen sulfide. Ind. Eng. Chem. Res. 50, 3555–3563 (2011)

    Article  CAS  Google Scholar 

  28. Mashayekhi, M., Sakhaeinia, H., Shokouhi, M.: Analysis of thermodynamic consistency behavior of CO2 solubility in some associating solvents. Int. J. Thermophys. 41, 1–28 (2020)

    Article  Google Scholar 

  29. Valderrama, J.O., Sanga, W.W., Lazzus, J.A.: Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind. Eng. Chem. Res. 47, 1318–1330 (2007)

    Article  Google Scholar 

  30. Saali, A., Shokouhi, M., Sakhaeinia, H., Kazemi, N.: Thermodynamic consistency test of vapor–liquid equilibrium data of binary systems including carbon dioxide (CO2) and ionic liquids using generic Redlich–Kwong equation of state. J. Solution Chem. 49, 383–404 (2020)

    Article  CAS  Google Scholar 

  31. Valderrama, J.O., Zavaleta, J.: Thermodynamic consistency test for high pressure gas solid solubility data of binary mixtures using genetic algorithms. J. Supercrit. Fluids 39, 20–29 (2006)

    Article  CAS  Google Scholar 

  32. Valderrama, J.O., Alvarez, V.H.: A versatile thermodynamic consistency test for incomplete phase equilibrium data of high-pressure gas–liquid mixtures. Fluid Phase Equilib. 226, 149–159 (2004)

    Article  CAS  Google Scholar 

  33. Brunner, E., Hultenschmidt, W., Schlichtharle, G.: Fluid mixtures at high pressures IV. Isothermal phase equilibria in binary mixtures consisting of (methanol + hydrogen or nitrogen or methane or carbon monoxide or carbon dioxide). J. Chem. Thermodyn. 19, 273–291 (1987)

    Article  CAS  Google Scholar 

  34. Smith, J.M., Van Ness, H.C., Abbott, M.M.: Introduction to Chemical Engineering Thermodynamics, 6th edn. McGraw-Hill, New York (2003)

    Google Scholar 

  35. Gui, X., Tang, Z.G., Fei, W.: Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288.15 to 318.15) K. J. Chem. Eng. Data 56, 2420–2429 (2011)

    Article  CAS  Google Scholar 

  36. Jalili, A.H., Shokouhi, M., Samani, F., Hosseini-Jenab, M.: Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S). J. Chem. Thermodyn. 85, 13–25 (2015)

    Article  CAS  Google Scholar 

  37. Chang, C.J., Day, C.Y., Ko, C.M., Chiu, K.L.: Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures. Fluid Phase Equilib. 131, 243–258 (1997)

    Article  CAS  Google Scholar 

  38. Ohgaki, K., Katayama, T.: Isothermal vapor–liquid equilibrium data for binary systems containing carbon dioxide at high pressures: methanol–carbon dioxide, n-hexane–carbon dioxide, and benzene–carbon dioxide systems. J. Chem. Eng. Data 21, 53–55 (1976)

    Article  CAS  Google Scholar 

  39. Joung, S.N., Yoo, C.W., Shin, H.Y., Kim, S.Y., Yoo, K.P., Lee, C.S., Huh, W.S.: Measurements and correlation of high-pressure VLE of binary CO2–alcohol systems (methanol, ethanol, 2-methoxyethanol and 2-ethoxyethanol). Fluid Phase Equilib. 185, 219–223 (2001)

    Article  CAS  Google Scholar 

  40. Zheng, D.Q., Ma, W.D., Wei, R., Guo, T.M.: Solubility study of methane, carbon dioxide and nitrogen in ethylene glycol at elevated temperatures and pressures. Fluid Phase Equilib. 155, 277–286 (1999)

    Article  CAS  Google Scholar 

  41. Chapoy, A., Mohammadi, A.H., Tohidi, B.: Experimental measurement and phase behavior modeling of hydrogen sulfide–water binary system. Ind. Eng. Chem. Res. 44, 7567–7574 (2005)

    Article  CAS  Google Scholar 

  42. Shokouhi, M., Rezaierad, A.R., Zekordi, S.M., Abbasghorbani, M., Vahidi, M.: Solubility of hydrogen sulfide in ethanediol, 1,2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling. J. Chem. Eng. Data 61, 512–524 (2016)

    Article  CAS  Google Scholar 

  43. Yau, J.S., Tsal, F.N.: Solubility of carbon dioxide in phenol and in catechol. J. Chem. Eng. Data 37, 141–143 (1992)

    Article  CAS  Google Scholar 

  44. Mak, P.C.: Thermodynamic Properties from Cubic Equations of State. M. Sci., University of British Columbia (1988)

  45. Mohamed, R.S., Holder, G.D.: High pressure phase behavior in systems containing CO2 and heavier compounds with similar vapor pressures. Fluid Phase Equilib. 32, 295–317 (1987)

    Article  CAS  Google Scholar 

  46. Sugie, H., Iwahori, Y., Lu, B.C.: On the application of cubic equations of state: Analytical expression for α/Tr and improved liquid density. Fluid Phase Equilib. 50, 1–20 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sakhaeinia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saali, A., Sakhaeinia, H. & Shokouhi, M. Modification of Peng–Robinson Cubic Equation of State with Correction of the Temperature Dependency Term. J Solution Chem 50, 402–426 (2021). https://doi.org/10.1007/s10953-021-01065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01065-8

Keywords

Navigation