Skip to main content
Log in

Isomerization of Aspartyl Residue in Amyloid Beta Fragments: The Kinetics by Real-Time 1H NMR Under Neutral and Basic Conditions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isomers of aspartyl (Asp) residues have been found in various proteins in aged human tissues. Isomerization of Asp is considered as one of the potential factors to facilitate amyloidosis via the oligomerization of amyloid beta (Aβ) peptides. It is still challenging to analyze such isomerization in real time, and no information has been provided about Asp isomerization in situ. In this work, we report a real-time quantitation of the isomerization at Asp in Aβ fragment peptides, Aβ2−9 (A2EFRHD7SG9) and Aβ2−16 (A2EFRHD7SGYEVHHQK16) by using solution-state 1H NMR in situ. The simultaneous NMR detection of isomerization product and reactant enables us to compare how fast Asp is converted to isoAsp in terms of the kinetics of isomerization in real time. In Aβ2−9, the rate constant, k of the increase of isoAsp7 was almost parallel with the decrease of Asp7; the rate constants were estimated to be (1.3 ± 0.1) × 10−3 h−1 for Asp7 decrease and (1.2 ± 0.1) × 10−3 h−1 for the increase of isoAsp7 at 70 °C. In Aβ2−16, however, k of isoAsp7 increase was much less than the Asp7 decrease. This is due to an inhibitory effect of histidine (His) on the progress of Asp isomerization; the coupling of His imidazole ring with a succinimide (Suc) intermediate makes Suc lifetime longer enough to interfere with the conversion to isoAsp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fisher, G.H., D’Aniello, A., Vetere, A., Cusano, G.P., Chavez, M., Petrucelli, L.: Quantification of D-aspartate in normal and Alzheimer brains. Neurosci. Lett. 143, 215–218 (1992)

    Article  CAS  Google Scholar 

  2. Roher, A.E., Lowenson, J.D., Clarke, S., Wolkow, C., Wang, R., Cotter, R.J., Reardon, I.M., Zürcher-Neely, H.A., Heinrikson, R.L., Ball, M.J.: Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 268, 3072–3083 (1993)

    CAS  PubMed  Google Scholar 

  3. Masters, P.M., Bada, J.L., Zigler Jr., J.S.: Aspartic acid racemization in heavy molecular weight crystallins and water insoluble protein from normal human lenses and cataracts. Proc. Natl. Acad. Sci. USA 75, 1204–1208 (1978)

    Article  CAS  Google Scholar 

  4. Fujii, N., Satoh, K., Harada, K., Ishibashi, Y.: Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from aged human lens. J. Biochem. 116, 663–669 (1994)

    Article  CAS  Google Scholar 

  5. Fujii, N., Ishibashi, Y., Satoh, K., Fujino, M., Harada, K.: Simultaneous racemization and isomerization at specific aspartic acid residues in alpha B-crystallin from the aged human lens. Biochim. Biophys. Acta 1204, 157–163 (1994)

    Article  CAS  Google Scholar 

  6. Fujii, N., Kawaguchi, T., Sasaki, H., Fujii, N.: Simultaneous stereoinversion and isomerization at the Asp-4 residue in betaB2-crystallin from the aged human eye lenses. Biochemistry 50, 8628–8635 (2011)

    Article  CAS  Google Scholar 

  7. Takata, T., Murakami, K., Toyama, A., Fujii, N.: Identification of isomeric aspartate residues in βB2-crystallin from aged human lens. Biochim. Biophys. Acta 1866, 767–774 (2018)

    Article  CAS  Google Scholar 

  8. Kaji, Y., Oshika, T., Takazawa, Y., Fukayama, M., Takata, T., Fujii, N.: Localization of D-beta-aspartic acid-containing proteins in human eyes. Investig. Ophthalmol. Vis. Sci. 48, 3923–3927 (2007)

    Article  Google Scholar 

  9. Kaji, Y., Oshika, T., Okamoto, F., Fujii, N.: Immunohistochemical localization of D-beta-aspartic acid in pingueculae. Br. J. Ophthalmol. 93, 974–976 (2009)

    Article  CAS  Google Scholar 

  10. Kaji, Y., Oshika, T., Takazawa, Y., Fukayama, M., Fujii, N.: Immunohisto-chemical localisation of D-beta-aspartic acid-containing proteins in climatic droplet keratopathy. Br. J. Ophthalmol. 93, 977–979 (2009)

    Article  CAS  Google Scholar 

  11. Helfman, P.M., Bada, J.L.: Aspartic acid racemisation in dentine as a measure of ageing. Nature 262, 279–281 (1976)

    Article  CAS  Google Scholar 

  12. Powell, J.T., Vine, N., Crossman, M.: On the accumulation of D-aspartate inelastin and other proteins of the ageing aorta. Atherosclerosis 97, 201–208 (1992)

    Article  CAS  Google Scholar 

  13. Ohtani, S., Yamamoto, T., Matsushima, Y., Kobayashi, Y.: Changes in the amount of D-aspartic acid in the human femur with age. Growth Dev. Aging 62, 141–148 (1998)

    CAS  PubMed  Google Scholar 

  14. Cloos, P.A., Fledelius, C.: Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem. J.  3, 473–480 (2000)

    Article  Google Scholar 

  15. Ritz-Timme, S., Laumeier, I., Collins, M.: Age estimation based on aspartic acid racemization in elastin from the yellow ligaments. Int. J. Legal Med. 117, 96–101 (2003)

    Article  CAS  Google Scholar 

  16. Fujii, N., Tajima, S., Tanaka, N., Fujimoto, N., Takata, T., Tadashi, S.: The presence of D-beta-aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. Biochem. Biophys. Res. Commun. 294, 1047–1051 (2002)

    Article  CAS  Google Scholar 

  17. Mori, Y., Aki, K., Kuge, K., Tajima, S., Yamanaka, N., Nagai, R., Yoshii, H., Fujii, N., Watanabe, M., Kinouchi, T., Fujii, N.: UV B-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of Nepsilon-Carboxymethyl Lysine (CML) in keratin of skin. J. Chromatogr. B  879, 3303–3309 (2011)

    Article  CAS  Google Scholar 

  18. Ha, S., Kim, I., Takata, T., Kinouchi, T., Isoyama, M., Suzuki, M., Fujii, N.: Identification of -amino acid-containing peptides in human serum. PLoS ONE 12(12), e0189972 (2017)

    Article  Google Scholar 

  19. Geiger, T., Clarke, S.: Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262, 785–794 (1987)

    CAS  PubMed  Google Scholar 

  20. Magami, K., Kim, I., Fujii, N.: A single Asp isomer substitution in an αA-crystallin-derived peptide induces a large change in peptide properties. Exp. Eye Res. 192, 107930 (2020)

    Article  CAS  Google Scholar 

  21. Sakaue, H., Kinouchi, T., Fujii, N., Takata, T., Fujii, N.: Isomeric replacement of a single aspartic acid induces a marked change in protein function: the example of Ribonuclease A. ACS Omega 2, 260–267 (2017)

    Article  CAS  Google Scholar 

  22. Kozin, S.A., Cheglakov, I.B., Ovsepyan, A.A., Telegin, G.B., Tsvetkov, P.O., Lisitsa, A.V., Makarov, A.A.: Peripherally applied synthetic peptide isoAsp7-Aβ(1–42) triggers cerebral β-amyloidosis. Neurotox. Res. 24, 370–376 (2013)

    Article  CAS  Google Scholar 

  23. Aki, K., Okamura, E.: D-β-aspartyl residue exhibiting uncommon high resistance to spontaneous peptide bond cleavage. Sci. Rep. 6, 21594 (2016)

    Article  CAS  Google Scholar 

  24. Capasso, S.: Thermodynamic parameters of the reversible isomerization of aspartic residues via a succinimide derivative. Thermochim. Acta 286, 41–50 (1996)

    Article  CAS  Google Scholar 

  25. Fujii, N., Aki, K., Fujii, N.: D-amino-acid-containing proteins in living body. In: Pályi, G., Zucchi, C., Caglioti, L. (eds.) The Soai Reaction and Related Topic, Accademia Nazionale di Scienze Lettere e Arti Modena, Italy (2012), Chap. 2, pp. 35–52

  26. Brennan, T.V., Clarke, S.: Effect of adjacent histidine and cysteine residues on the spontaneous degradation of Asparaginyl- and aspartyl-containing peptides. Int. J. Pept. Protein Res. 45, 547–553 (1995)

    Article  CAS  Google Scholar 

  27. Sang-aroon, W., Ruangpornvisuti, V.: Theoretical study on isomerization and peptide bond cleavage at aspartic residue. J. Mol. Model. 19, 3627–3636 (2013)

    Article  CAS  Google Scholar 

  28. Catak, S., Monard, G., Aviyente, V., Ruiz-Lo´pez, M.F.: Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. J. Phys. Chem. A 112, 8752–8761 (2008)

    Article  CAS  Google Scholar 

  29. Aki, K., Okamura, E.: Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment. J. Pept. Sci. 23, 28–37 (2017)

    Article  CAS  Google Scholar 

  30. Aki, K., Fujii, N., Fujii, N.: Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions. PLoS ONE 8(3), e58515 (2013)

    Article  CAS  Google Scholar 

  31. Hooi, M.Y., Raftery, M.J., Truscott, R.J.: Interconversion of the peptide isoforms of aspartate: stability of isoaspartates. Mech Ageing Dev. 134(3–4), 103–109 (2013)

    Article  CAS  Google Scholar 

  32. Sadakane, Y., Fujii, N., Nakagomi, K.: Determination of rate constants for β-linkage isomerization of three specific aspartyl residues in recombinant human αA-crystallin protein by reversed-phase HPLC. J. Chromatogr. B 879(29), 3240–3246 (2011)

    Article  CAS  Google Scholar 

  33. Platzer, G., Okon, M., McIntosh, L.P.: pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pKa measurements. J. Biomol. NMR 60, 109–129 (2014)

    Article  CAS  Google Scholar 

  34. Grassi, L., Regl, C., Wildner, S., Gadermaier, G., Huber, C.G., Cabrele, C., Schubert, M.: Complete NMR assignment of succinimide and its detection and quantification in peptides and intact proteins. Anal. Chem. 89, 11962–11970 (2017)

    Article  CAS  Google Scholar 

  35. Okamura, E., Nakahara, M.: NMR study directly determining drug delivery sites in phospholipid bilayer membranes. J. Phys. Chem. B 103, 3505–3509 (1999)

    Article  CAS  Google Scholar 

  36. Okamura, E., Nakahara, M.: NMR studies on lipid bilayer interfaces coupled with anesthetics and endocrine disruptors. In: Volkov A.G. (ed.) Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications, Marcel Dekker, New York (2001) Chap. 32, pp. 775–805

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (15K04501 and 19K05394) and by Hyogo Science and Technology Association (No. 25073). The authors thank Kento Inoue for sample preparation and NMR data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Aki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aki, K., Okamura, E. Isomerization of Aspartyl Residue in Amyloid Beta Fragments: The Kinetics by Real-Time 1H NMR Under Neutral and Basic Conditions. J Solution Chem 49, 1293–1303 (2020). https://doi.org/10.1007/s10953-020-01018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01018-7

Keywords

Navigation