Skip to main content
Log in

Atomic-Level Topological Indices for Prediction of the Infinite Dilution Activity Coefficients of Oxo Compounds in Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The atomic-level AI topological indices and the modified Xu (mXu) index were utilized for quantitative structure–property relationship (QSPR) modeling of the infinite dilution activity coefficients of 108 oxo compounds in water at 298.15 K. Stepwise multiple linear regression (SMLR) analysis using the topological descriptors resulted in a model with R2 = \({\mathrm{R}}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}\)= 0.9904, SE = 0.3769, F = 1267.1 and an average relative error of 4.89%. The selected descriptors were then used to develop an artificial neural network (ANN) model for the activity coefficients. Findings of the study indicated that a 7–8-1 ANN trained by Levenberg–Marquardt algorithm results in the improved predictions, especially in view of a decrease as large as 47.24% in the average relative error compared to the SMLR model. The AI indices with a total contribution of 81.43% showed the dominant role of the atomic groups of the oxo compounds in determination of their activity coefficients at infinite dilution in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hsieh, C.M., Lin, S.T.: Prediction of 1-octanol–water partition coefficient and infinite dilution activity coefficient in water from the PR+COSMOSAC model. Fluid Phase Equilib. 285, 8–14 (2009)

    CAS  Google Scholar 

  2. Kojima, K., Zhang, S., Hiaki, T.: Measuring methods of infinite dilution activity coefficients and a database for systems including water. Fluid Phase Equilib. 131, 145–179 (1997)

    CAS  Google Scholar 

  3. Cheng, J.S., Tang, M., Chen, Y.P.: Correlation of solid solubility for biological compounds in supercritical carbon dioxide: comparative study using solution model and other approaches. Fluid Phase Equilib. 194–197, 483–491 (2002)

    Google Scholar 

  4. Shen, S., Nagata, I.: Prediction of excess enthalpies of ketone–alkane systems from infinite dilution activity coefficients. Themochim. Acta 258, 19–31 (1995)

    CAS  Google Scholar 

  5. Morton, D.W., Young, C.L.: Henry's law constants and infinite dilution activity coefficients of C2–C8 hydrocarbons in phenylalkanes. J. Chem. Thermodyn. 28, 895–904 (1996)

    CAS  Google Scholar 

  6. Sandler, S.I.: Infinite dilution activity coefficients in chemical, environmental and biochemical engineering. Fluid Phase Equilib. 116, 343–353 (1996)

    CAS  Google Scholar 

  7. Lindvig, T., Hestkjær, L.L., Hansen, A.F., Michelsen, M.L., Kontogeorgis, G.M.: Phase equilibria for complex polymer solutions. Fluid Phase Equilib. 194–197, 663–673 (2002)

    Google Scholar 

  8. Kolář, P., Shen, J.W., Tsuboi, A., Ishikawa, T.: Solvent selection for pharmaceuticals. Fluid Phase Equilib. 194–197, 771–782 (2002)

    Google Scholar 

  9. Dohnal, V., Ondo, D.: Refined non-steady-state gas–liquid chromatography for accurate determination of limiting activity coefficients of volatile organic compounds in water: application to C1–C5 alkanols. J. Chromatogr. A 1097, 157–164 (2005)

    CAS  PubMed  Google Scholar 

  10. Krummen, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. Fluid Phase Equilib. 215, 283–294 (2004)

    CAS  Google Scholar 

  11. Dallinga, L., Schiller, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution using differential ebulliometry and non-steady-state gas-liquid chromatography. J. Chem. Eng. Data 38, 147–155 (1993)

    CAS  Google Scholar 

  12. Xu, J., Zhang, H., Wang, L., Ye, W., Xu, W., Li, Z.: QSPR analysis of infinite dilution activity coefficients of chlorinated organic compounds in water. Fluid Phase Equilib. 291, 111–116 (2010)

    CAS  Google Scholar 

  13. Atabati, M., Zarei, K., Borhani, A.: Predicting infinite dilution activity coefficients of hydrocarbons in water using ant colony optimization. Fluid Phase Equilib. 293, 219–224 (2010)

    CAS  Google Scholar 

  14. Xu, J., Wang, L., Wang, L., Zhang, H., Xu, W.: Predicting infinite dilution activity coefficients of chlorinated organic compounds in aqueous solution based on three-dimensional WHIM and GETAWAY descriptors. J. Solution Chem. 40, 118–130 (2011)

    CAS  Google Scholar 

  15. Zarei, K., Atabati, M.: Prediction of infinite dilution activity coefficients of halogenated hydrocarbons in water using classification and regression tree analysis and adaptive neuro-fuzzy inference systems. J. Solution Chem. 42, 516–525 (2013)

    CAS  Google Scholar 

  16. Xiao, F., Peng, G., Nie, C., Wu, Y., Dai, Y.: Quantum topological method studies on the thermodynamic properties of polychlorinated phenoxazines. J. Mol. Struct. 1074, 679–686 (2014)

    CAS  Google Scholar 

  17. Atabati, M., Emamalizadeh, R.: A Quantitative structure property relationship for prediction of flash point of alkanes using molecular connectivity indices. Chin. J. Chem. Eng. 21, 420–426 (2013)

    CAS  Google Scholar 

  18. Mamy, L., Patureau, D., Barriuso, E., Bedos, C., Bessac, F., Louchart, X., Martin-Laurent, F., Miege, C., Benoit, P.: Prediction of the fate of organic compounds in the environment from their molecular properties: a review. Crit. Rev. Environ. Sci. Technol. 45, 1277–1377 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren, B.: Novel atom-type AI indices for QSPR studies of alcohols. Comput. Chem. 26, 223–235 (2002)

    CAS  PubMed  Google Scholar 

  20. Ren, B., Chen, G., Xu, Y.: A novel topological index for QSPR/QSAR study of organic compounds. Acta Chim. Sin. 57, 563–571 (1999). (in Chinese)

    CAS  Google Scholar 

  21. Ren, B., Xu, Y., Chen, G.: Estimation of heat capacity of complex organic compounds by a novel topological index. J. Chem. Eng. China 50, 280–286 (1999). (in Chinese)

    CAS  Google Scholar 

  22. Ren, B.: Novel atomic-level-based AI topological descriptors: application to QSPR/QSAR modeling. J. Chem. Inf. Comput. Sci. 42, 858–868 (2002)

    CAS  PubMed  Google Scholar 

  23. Ren, B.: Application of novel atom-type AI topological indices in the structure-property correlations. J. Mol. Struct. (THEOCHEM) 586, 137–148 (2002)

    CAS  Google Scholar 

  24. Ren, B.: Atom-type-based AI topological descriptors: application in structure-boiling point correlations of oxo organic compounds. J. Chem. Inf. Comput. Sci. 43, 1121–1131 (2003)

    CAS  PubMed  Google Scholar 

  25. Ren, B.: Atomic-level-based AI topological descriptors for structure–property correlations. J. Chem. Inf. Comput. Sci. 43, 161–169 (2003)

    CAS  PubMed  Google Scholar 

  26. Ren, B.: Application of novel atom-type AI topological indices to QSPR studies of alkanes. Comput. Chem. 26, 357–369 (2002)

    CAS  PubMed  Google Scholar 

  27. Ren, B.: Atom-type-based AI topological descriptors for quantitative structure–retention index correlations of aldehydes and ketones. Chemom. Intell. Lab. Syst. 66, 29–39 (2003)

    CAS  Google Scholar 

  28. Panneerselvam, K., Antony, M.P., Srinivasan, T.G., Rao, P.R.V.: Estimation of normal boiling points of trialkyl phosphates using retention indices by gas chromatography. Thermochim. Acta 511, 107–111 (2010)

    CAS  Google Scholar 

  29. Safa, F., Yekta, M.: Quantitative structure–property relationship study of standard formation enthalpies of acyclic alkanes using atom-type-based AI topological indices. Arab. J. Chem. 10, 439–447 (2017)

    CAS  Google Scholar 

  30. Osaghi, B., Safa, F.: QSPR study on the boiling points of aliphatic esters using the atom-type-based AI topological indices. Rev. Roum. Chim. 64, 183–189 (2019)

    Google Scholar 

  31. Safdel, F., Safa, F.: Atom-type-based AI topological indices for artificial neural network modeling of retention indices of monomethylalkanes. J. Chromatogr. Sci. 57, 1–8 (2019)

    CAS  PubMed  Google Scholar 

  32. Sutter, J.M., Jurs, P.C.: Adoption of Simulated Annealing to Chemical Optimization Problems. In: J.H. Kalivas (ed.), Elsevier, Amsterdam (1995)

  33. Mitchell, B.E., Jurs, P.C.: Prediction of infinite dilution activity coefficients of organic compounds in aqueous solution from molecular structure. J. Chem. Inf. Comput. Sci. 38, 200–209 (1998)

    CAS  Google Scholar 

  34. Dallas, A.J.: Fundamental solvatochromic and thermodynamic studies of complex chromatographic media. PhD Thesis. University of Minnesota, Minneapolis, MN (1995)

  35. Li, J.: Solvatochromic and thermodynamic studies of retention in gas chromatography and gas-liquid equilibria. PhD Thesis. University of Minnesota, Minneapolis, MN (1992)

  36. Sutter, J.M., Dixon, S.L., Jurs, P.C.: Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing. J. Chem. Inf. Comput. Sci. 35, 77–84 (1995)

    CAS  Google Scholar 

  37. Li, J., Dallas, A.J., Eikens, D.I., Carr, P.W., Bergmann, D.L., Hait, M.J., Eckert, C.A.: Measurement of large infinite dilution activity coefficients of nonelectrolytes in water by inert gas stripping and gas chromatography. Anal. Chem. 65, 3212–3218 (1993)

    CAS  Google Scholar 

  38. Wessel, M.D.: PhD Thesis, Pennsylvania State University, University Park, PA (1996)

  39. Yaws, C.L., Yang, H., Hopper, J.R., Hansen, K.C.: Organic chemicals: water solubility data. Chem. Eng. 97, 115–116 (1990)

    CAS  Google Scholar 

  40. Kier, L.B., Hall, L.H.: Molecular connectivity in structure–activity studies. Research Studies Press, Letchworth (1986)

    Google Scholar 

  41. SPSS for Windows.: Statistical package for IBM PC, Release 20.0, SPSS Inc., https://www.spss.com.

  42. MATLAB R2013a, The Math Works Inc., https://www.mathworks.com

  43. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000)

    CAS  PubMed  Google Scholar 

  44. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Google Scholar 

  45. Andrea, T.A., Kalayeh, H.: Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. J. Med. Chem. 34, 2824–2836 (1991)

    CAS  PubMed  Google Scholar 

  46. He, J., Zhong, Ch.: A QSPR study of infinite dilution activity coefficients of organic compounds in aqueous solutions. Fluid Phase Equilib. 205, 303–316 (2003)

    CAS  Google Scholar 

  47. Estrada, E., Díaz, G.A., Delgado, E.J.: Predicting infinite dilution activity coefficients of organic compounds in water by quantum-connectivity descriptors. J. Comput. Aided Mol. Des. 20, 539–548 (2006)

    CAS  PubMed  Google Scholar 

  48. Aleboyeh, A., Kasiri, M.B., Olya, M.E., Aleboyeh, H.: Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes Pigm. 77, 288–294 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Safa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safa, F. Atomic-Level Topological Indices for Prediction of the Infinite Dilution Activity Coefficients of Oxo Compounds in Water. J Solution Chem 49, 222–238 (2020). https://doi.org/10.1007/s10953-020-00954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00954-8

Keywords

Navigation