Skip to main content
Log in

Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning

  • Computational Approaches for Materials Discovery and Development Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The Flory-Huggins interaction parameter \(\chi\) for polymer-solvent mixtures captures the nature of interactions and provides insights on solubility. \(\chi\) is usually estimated using experimental or (empirical) computational methods, which may be expensive, time-consuming or inaccurate. Here, we built a machine learning (ML) model to instantly predict temperature-dependent \(\chi\) for a given polymer-solvent pair. The ML model was trained using 1586 experimental polymer-solvent datapoints, and a hierarchical polymer and solvent fingerprinting scheme. Extensive testing has been performed to verify the accuracy and generality of this model. This work demonstrates an ML model that can progressively be improved as new data emerges.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The compiled \(\chi\) dataset has been made available in the Supplemental Information.

References

  1. L. Robeson, Applications of polymer blends: emphasis on recent advances. Polym. Eng. Sci. 24, 587–597 (1984). https://doi.org/10.1002/pen.760240810

    Article  CAS  Google Scholar 

  2. G. Fredrickson, A. Liu, F. Bates, Entropic corrections to the Flory-Huggins theory of polymer blends: architectural and conformational effects. Macromolecules 27, 2503–2511 (1994). https://doi.org/10.1021/ma00087a019

    Article  CAS  Google Scholar 

  3. E. Favre, P. Schaetzel, Q. Nguygen, R. Clement, J. Neel, Sorption, diffusion and vapor permeation of various penetrants through dense poly (dimethylsiloxane) membranes: a transport analysis. J. Membr. Sci. 92, 169–184 (1994). https://doi.org/10.1016/0376-7388(94)00060-3

    Article  CAS  Google Scholar 

  4. R. Mathias, D. Weber, K. Thompson, B. Marshall, M. Finn, J. Scott, R. Lively, Framework for predicting the fractionation of complex liquid feeds via polymer membranes. J. Membr. Sci. 640, 119767 (2021). https://doi.org/10.1016/j.memsci.2021.119767

    Article  CAS  Google Scholar 

  5. B. Yan, X. Cao, Phase diagram of novel recycling aqueous two-phase systems composed of two pH-response polymers: experiment and modeling. Fluid Phase Equilib. 364, 42–47 (2014). https://doi.org/10.1016/j.fluid.2013.11.037

    Article  CAS  Google Scholar 

  6. N. Schuld, B. Wolf, Polymer-solvent interaction parameters. Polym. Handb. (1999). https://doi.org/10.1002/0471532053.bra052

    Article  Google Scholar 

  7. A. Patwardhan, L. Belfiore, Prediction of thermodynamic properties of polymer solutions by a group-contribution method. J. Polym. Sci. B Polym. Phys. 24, 2473–2486 (1986). https://doi.org/10.1016/0032-3861(87)90049-8

    Article  CAS  Google Scholar 

  8. R. Sman, Predicting the solubility of mixtures of sugars and their replacers using the Flory-Huggins theory. Food Funct. 8, 360–371 (2017). https://doi.org/10.1039/C6FO01497F

    Article  CAS  Google Scholar 

  9. C. Sheehan, A. Bisio, Polymer/solvent interaction parameters. Rubber Chem. Technol. 39, 149–192 (1966). https://doi.org/10.5254/1.3544827

    Article  CAS  Google Scholar 

  10. R. Orwoll, P. Arnold, Polymer-solvent interaction parameter, in Physical properties of polymers handbook. (Springer, New York, 2007), pp.233–257

    Chapter  Google Scholar 

  11. C. Callaway, K. Hendrickson, N. Bond, S. Lee, P. Sood, S. Jang, Molecular modeling approach to determine the Flory-Huggins interaction parameter for polymer miscibility analysis. ChemPhysChem 19, 1655–1664 (2018). https://doi.org/10.1002/cphc.201701337

    Article  CAS  Google Scholar 

  12. D. Kozuch, W. Zhang, S. Milner, Predicting the Flory-Huggins \(\chi\) parameter for polymers with stiffness mismatch from molecular dynamics simulations. Polymers 8, 241 (2016). https://doi.org/10.3390/polym8060241

    Article  CAS  Google Scholar 

  13. A. Ravichandran, C. Chen, R. Khare, Prediction of \(\chi\) parameter of polymer blends by combining molecular simulations and integral equation theory. J. Phys. Chem. 122, 9022–9031 (2018). https://doi.org/10.1021/acs.jpcb.8b06684

    Article  CAS  Google Scholar 

  14. S. Jawalkar, S. Adoor, M. Sairam, M. Nadagouda, T. Aminabhavi, Molecular modeling on the binary blend compatibility of poly (vinyl alcohol) and poly (methyl methacrylate): an atomistic simulation and thermodynamic approach. Am. J. Phys. Chem. 109, 15611–15620 (2005). https://doi.org/10.1021/jp051206v

    Article  CAS  Google Scholar 

  15. Polymerdatabase temperature and concentration dependence of interaction parameter. Solubility and interaction parameters. https://polymerdatabase.com/polymer%20physics/Scott%20Hildebrand.html. Accessed 23 Apr 2022

  16. R. Batra, L. Song, R. Ramprasad, Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 6, 655–678 (2021). https://doi.org/10.1038/s41578-020-00255-y

    Article  Google Scholar 

  17. L. Chen, G. Pilania, R. Batra, T. Huan, C. Kim, C. Kuenneth, R. Ramprasad, Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R Rep. 144, 100595 (2021). https://doi.org/10.1016/j.mser.2020.100595

    Article  Google Scholar 

  18. T. Huan, A. Mannodi-Kanakkithodi, R. Ramprasad, Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B Condens. Matter. 92, 014106 (2015). https://doi.org/10.1103/PhysRevB.92.014106

    Article  CAS  Google Scholar 

  19. J. Brandrup, E. Immergut, E. Grulke, A. Abe, D. Bloch, Polymer handbook (Wiley, New York, 1999), pp.V1–V6

    Google Scholar 

  20. Materials Genome Project. Flory-Huggins Chi (\(\chi\)) Database. https://pppdb.uchicago.edu/chi. Accessed 23 Apr (2022)

  21. S. Gündüz, S. Dincer, Solubility behaviour of polystyrene: thermodynamic studies using gas chromatography. Polymer 21, 1041–1046 (1980). https://doi.org/10.1016/0032-3861(80)90035-X

    Article  Google Scholar 

  22. R. Kokes, A. DiPietro, F. Long, Equilibrium sorption of several organic diluents in polyvinyl acetate. J. Am. Chem. Soc. 75, 6319–6321 (1953)

    Article  CAS  Google Scholar 

  23. C. Grozea, I. Li, D. Grozea, G. Walker, Microdomain orientation of diblock copolymer ultrathin films solvent annealed at low temperatures. Macromolecules 44, 3901–3909 (2011). https://doi.org/10.1021/ma102470v

    Article  CAS  Google Scholar 

  24. C. Caddeo, A. Mattoni, Atomistic investigation of the solubility of 3-alkylthiophene polymers in tetrahydrofuran solvent. Macromolecules 46, 8003–8008 (2013). https://doi.org/10.1021/ma401345n

    Article  CAS  Google Scholar 

  25. J. Emerson, D. Toolan, J. Howse, E. Furst, T. Epps III., Determination of solvent–polymer and polymer–polymer Flory-Huggins interaction parameters for poly (3-hexylthiophene) via solvent vapor swelling. Macromolecules 46, 6533–6540 (2013). https://doi.org/10.1021/ma400597j

    Article  CAS  Google Scholar 

  26. K. Secrist, A. Nolte, Humidity swelling/deswelling hysteresis in a polyelectrolyte multilayer film. Macromolecules 44, 2859–2865 (2011). https://doi.org/10.1021/ma101983s

    Article  CAS  Google Scholar 

  27. L. Yen, J. McKetta Jr., A thermodynamic correlation of nonpolar gas solubilities in polar, nonassociated liquids. AIChE J. 8, 501–507 (1962). https://doi.org/10.1002/aic.690080416

    Article  CAS  Google Scholar 

  28. Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, Y. Han, Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment. Macromolecules 37, 7301–7307 (2004). https://doi.org/10.1021/ma0497761

    Article  CAS  Google Scholar 

  29. H. Doan Tran, C. Kim, L. Chen, A. Chandrasekaran, R. Batra, S. Venkatram, D. Kamal, J. Lightstone, R. Gurnani, P. Shetty et al., Machine-learning predictions of polymer properties with polymer genome. Int. J. Appl. Phys. 128, 171104 (2020). https://doi.org/10.1063/5.0023759

    Article  CAS  Google Scholar 

  30. M. Tian, P. Munk, Characterization of polymer-solvent interactions and their temperature dependence using inverse gas chromatography. J. Chem. Eng. Data. 39, 742–755 (1994). https://doi.org/10.1021/je00016a024

    Article  CAS  Google Scholar 

  31. D. Tomlin, C. Roland, Negative excess enthalpy in a van der Waals polymer mixture. Macromolecules 25, 2994–2996 (1992). https://doi.org/10.1021/ma00037a033

    Article  CAS  Google Scholar 

  32. R. Batra, H. Tran, C. Kim, J. Chapman, L. Chen, A. Chandrasekaran, R. Ramprasad, General atomic neighborhood fingerprint for machine learning-based methods. J. Phys. Chem. C 123, 15859–15866 (2019). https://doi.org/10.1021/acs.jpcc.9b03925

    Article  CAS  Google Scholar 

  33. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  34. C. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, Boca Raton, 2007), pp.507–510

    Book  Google Scholar 

  35. A. Chandrasekaran, C. Kim, S. Venkatram, R. Ramprasad, A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers. Macromolecules 53, 4764–4769 (2020). https://doi.org/10.1021/acs.macromol.0c00251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ExxonMobil Research and Engineering for their support. We would also like to acknowledge Dr. Ronita Mathias from the Lively lab at Georgia Institute of Technology, for their valuable feedback. We also thank Joseph Kern and Chiho Kim from the Ramprasad Group at Georgia Institute of Technology, for their indispensable inputs.

Funding

This study was funded by ExxonMobil Research and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rampi Ramprasad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nistane, J., Chen, L., Lee, Y. et al. Estimation of the Flory-Huggins interaction parameter of polymer-solvent mixtures using machine learning. MRS Communications 12, 1096–1102 (2022). https://doi.org/10.1557/s43579-022-00237-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00237-x

Keywords

Navigation