Skip to main content
Log in

Some New Contributions to the Theory of Polyelectrolyte Solutions: Prediction of Polyion Conformation and Interpretation of Some Deviations from Kohlrausch’s Law According to the Superposition Principle and the Dielectric Friction Effect

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductivity measurements in water and at 25 °C show that the variation of the equivalent conductivity ΛPX with the counter ion concentration CX of some PDDPX polyelectrolytes, poly(1,1-dimethyl-3,5-dimethylene piperidinium, X), for X ≡ Br, Cl, \({\text{NO}}_{3}^{ - }\) and F, is characterized by an inversion in Kohlraush’s law (i.e., \(\forall\)C, ΛPX < ΛPX′ if \(\lambda_{\text{X}}^{ \circ }\) > \(\lambda_{{\text{X}}^{\prime}}^{ \circ }\)), where \(\lambda_{\text{X}}^{ \circ }\) is the conductivity of the counter ion X at infinite dilution. This anomaly cannot be explained in the case of stretched polyions, by the dependence of ΛPX with the degree of dissociation αX, since αX remains quasi-constant at about 0.7 for CX < 2 × 10−2 mol·L−1. On the other hand, such a reversal implies that in the case of a coiled conformation, there is an increase in the ionic condensation, which is incompatible with hydrophobic folding. Similarly, hydrodynamic, electrophoretic and ionic frictions on these PDDPX polyelectrolytes cannot explain this inversion given their weak dependence with the nature of the counter ion X. In fact, for X ≡ Br, Cl, \({\text{NO}}_{3}^{ - }\), and for X ≡ F with CX > 10−3 mol·L−1, this anomaly occurs for PDDPZS+ polyions having a completely stretched chain conformation for which the translational dielectric friction effect on their charged groups becomes important to a variable degree depending on the nature of X. For PDDPF polyelectrolytes, this anomaly is amplified at high dilution because of possible synergy between the ionic dissociation and the hydrophobic character of the polyion, giving rise to a “pearl-necklace conformation” of effective length, L, decreasing with the dilution. In this work, we represent the conformation of polyions by an ellipsoid with a variable eccentricity γp, or by a chain of charged spheres with a variable group radius Rg, or by a pearl necklace model with a variable length L and a variable bead radius. The stability of the general configuration was formally studied according to a new approach based on the principle of superposition of ionic screening effects on the different charged groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36(11), 2689–2778 (1932)

    Article  CAS  Google Scholar 

  2. Kohlrausch, F.: Notiz über die wärmeausdehnung des hartgummi. Progg. Annl. 169, 170 (1873)

    Article  Google Scholar 

  3. Ghazouani, A., Boughammoura, S., M’halla, J.: New interpretation of the dependence of the conductibility of PSS and PAA polyions with the nature of the counterions. Colloid. Polym. Sci. 293, 2995–3011 (2015)

    Article  CAS  Google Scholar 

  4. Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969)

    Article  CAS  Google Scholar 

  5. Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-diffusion of the small ions. J. Chem. Phys. 51, 934–935 (1969)

    Article  Google Scholar 

  6. Manning, G.S.: Limiting law for the conductance of the rod model of a salt-free polyelectrolyte solution. J. Phys. Chem. 79(3), 262–265 (1975)

    Article  CAS  Google Scholar 

  7. Manning, G.S.: Counterion binding in polyelectrolyte theory. Acc. Chem. Res. 12(12), 443–449 (1979)

    Article  CAS  Google Scholar 

  8. M’halla, J.: Polyelectrolytic conductance limiting laws in conformity with the principles of equilibrium and nonequilibrium thermodynamics interdependence between conformation condensation and dielectric friction. J. Mol. Liq. 82, 183–218 (1999)

    Article  Google Scholar 

  9. Vink, H.: Conductivity of polyelectrolyte in very dilute solutions. J. Chem. Soc. Faraday Trans. 77, 2439–2449 (1981)

    Article  CAS  Google Scholar 

  10. Muthukumar, M.: 50th Anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules 50(24), 9528–9560 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M’halla, J., Besbes, R., Bouazzi, R., Boughammoura, S.: About the singular behavior of the ionic condensation of sodium chondroitin sulfate conductivity study in water and water–dioxane mixture. Chem. Phys. 321, 10–24 (2006)

    Article  CAS  Google Scholar 

  12. M’halla, J., Besbes, R., Bouazzi, R., Boughammoura, S.: Ionic condensation of sodium chondroitin sulfate in water–dioxane mixture. J. Mol. Liq. 130, 59–69 (2007)

    Article  CAS  Google Scholar 

  13. Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions 7. Electrophoretic mobility and conductance. J. Phys. Chem. 85, 1506–1515 (1981)

    Article  CAS  Google Scholar 

  14. Boughammoura, S., M’halla, J.: Translational dielectric friction on a chain of charged spheres. Sci. World J. 2014, 1–15 (2014)

    Article  Google Scholar 

  15. M’halla, J., Boughammoura, S.: Translation dielectric friction and mobility of ellipsoidal polyions. J. Mol. Liq. 157, 89–101 (2010)

    Article  CAS  Google Scholar 

  16. Muthukumar, M.: Dynamics of polyelectrolyte solutions. J. Chem. Phys. 107, 2619–2635 (1997)

    Article  CAS  Google Scholar 

  17. Dobrynin, A.V., Rubinstein, M.: Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005)

    Article  CAS  Google Scholar 

  18. Boughammoura, S., M’halla, J.: Generalization of the model of Debye–Hückel according to a matrix approach. Application to the calculation of the potential of mean force in the case of electrolytes, polyelectrolytes and colloids. J. Mol. Liq. 214, 196–206 (2016)

    Article  CAS  Google Scholar 

  19. Stillinger Jr., F.H., Lovett, R.: Ion-pair theory of concentrated electrolytes. J. Chem. Phys. 48, 3858–3868 (1968)

    Article  CAS  Google Scholar 

  20. Katchalsky, A., Alexandrowicz, Z., Kedem, O.: In: Conway, B.E., Barradas, R.G. (eds.) Chemical Physics of Ionic Solutions. Wiley, New York (1966)

    Google Scholar 

  21. Blum, L.: Mean spherical model for asymmetric electrolytes. Mol. Phys. 30, 1529–1535 (1975)

    Article  CAS  Google Scholar 

  22. Blum, L., Hoye, J.S.: Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 81, 1311–1313 (1977)

    Article  CAS  Google Scholar 

  23. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths Scientific Publications, London (1959)

    Google Scholar 

  24. Fuoss, R., Accascina, F.: Electrolytic conductance. Interscience Publishers, New York (1969)

    Google Scholar 

  25. Ben Mahmoud, S., Essafi, W., Abidelli, A., Rawiso, M., Boue, F.: Quenched polyelectrolytes with hydrophobicity independent from chemical charge fraction: a SANS and SAXS study. Arab. J. Chem. 10, 1001–1014 (2017)

    Article  CAS  Google Scholar 

  26. Colby, R.H.: Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49, 425–442 (2010)

    Article  CAS  Google Scholar 

  27. Boughammoura, S., M’halla, J.: Estimation of the hydrophobic reactivity of SDS micelles by the use of BPh 4 anions. J. Mol. Liq. 175, 148–161 (2012)

    Article  CAS  Google Scholar 

  28. Qian, H., Elson, E.L.: Quantitative study of polymer conformation and dynamics by single-particle tracking. Biophys. J. 76, 1598–1605 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hubbard, J.B., Douglas, F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E 47, 2983–2986 (1993)

    Article  Google Scholar 

  30. Fuoss, R.M.: Dependence of the Walden product on dielectric constant. Proc. Natl. Acad. Sci. USA 45, 807 (1959)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boyd, R.H.: Extension of Stokes’ Law for ionic motion to include the effect of dielectric relaxation. J. Chem. Phys. 35, 1281–1283 (1961)

    Article  CAS  Google Scholar 

  32. Zwanzig, R.: Dielectric friction on a moving ion. J. Chem. Phys. 38, 1603–1605 (1963)

    Article  CAS  Google Scholar 

  33. Hubbard, J.B., Onsager, L.: Dielectric dispersion and dielectric friction in electrolyte solutions I. J. Chem. Phys. 67, 4850–4857 (1977)

    Article  CAS  Google Scholar 

  34. Hubbard, J.B.: Dielectric dispersion and dielectric friction in electrolyte solutions. II. J. Chem. Phys. 68, 1649–1664 (1978)

    Article  CAS  Google Scholar 

  35. Nostro, L., Ninham, B.W.: Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012)

    Article  PubMed  CAS  Google Scholar 

  36. Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Studies in Physical and Theoretical Chemistry, vol. 12. Elsevier Scientific Publishing Company, Amsterdam and New York (1981)

    Google Scholar 

  37. Rios, H.E., Sepulveda, L.N., Gamboa, C.I.: Electrical conductivity of cationic polyelectrolytes in aqueous solution. J. Polym. Sci. Pol. Phys. B. 28, 505–511 (1990)

    Article  CAS  Google Scholar 

  38. Lahoiya, N.: Modélisation de la condensation ionique selon le modèle de la chaîne linéaire de sphères chargées. Master memory. Faculty of Sciences. University of Monastir, Tunisia (2015)

    Google Scholar 

  39. Nagaya, J., Minakata, A., Tanioka, A.: Conductance and counterion activity of ionene solutions. Langmuir 15(12), 4129–4134 (1999)

    Article  CAS  Google Scholar 

  40. Luksic, M., Hribar-Lee, B., Vlachy, V.: Interplay of ion-specific and charge-density effects in aqueous solutions of weakly charged ionenes as revealed by electric-transport measurements. J. Phys. Chem. B 114(32), 10401–10408 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Zelikin, A.N., Davydova, O.V., Akritskaya, N.I., Kargov, S.I., Izumrudov, V.A.: Conformation of polyelectrolyte chains in dilute aqueous solutions investigated by conductometry. Influence of molecular mass and charge density of the chains on conformation of symmetrical aliphatic ionene bromides. J. Phys. Chem. B 108(1), 490–495 (2004)

    Article  CAS  Google Scholar 

  42. Druchok, M., Malikova, N., Rollet, A.-L., Vlachy, V.: Counter-ion binding and mobility in the presence of hydrophobic polyions: combining molecular dynamics simulations and NMR. AIP Adv. 6, 065214 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the General Direction of Scientific Research of Tunisia (D.G.R.S.T) for assistance and supporting grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalel M’halla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’halla, J., Boughammoura, S. & Ghazouani, A. Some New Contributions to the Theory of Polyelectrolyte Solutions: Prediction of Polyion Conformation and Interpretation of Some Deviations from Kohlrausch’s Law According to the Superposition Principle and the Dielectric Friction Effect. J Solution Chem 48, 1685–1715 (2019). https://doi.org/10.1007/s10953-019-00916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00916-9

Keywords

Navigation