Skip to main content
Log in

New interpretation of the dependence of the conductibility of PSS and PAA polyions with the nature of the counterions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The main object of this paper is to give a new interpretation of the dependence of the conductibility of a polyion with the nature of its counterions. For this, we analyzed in detail while comparing several models, the various physical factors influencing the mobility of a polyion (ionic condensation, hydrodynamic and electrophoretic frictions, ionic relaxation effect, and dielectric friction), and also their correlation with the ionic force and the conformation of the polyion. We showed that the specificity of the counterions appears in the hydrodynamic and electrophoretic effects via their effective radii, as in the dielectric friction effect, because of the influence of the condensed ions on the local permittivity around polyions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M’halla J (1999) Polyelectrolytic conductance limiting laws in conformity with the principles of equilibrium and non-equilibrium thermodynamics interdependence between conformation condensation and dielectric friction. J Mol Liq 82:183–218

    Article  Google Scholar 

  2. M’halla J, Besbes R, Bouazzi R, Boughammoura S (2006) About the singular behavior of the ionic condensation of sodium chondroitin sulfate conductivity study in water and water-dioxane mixture. J Chem Phys 321:10–24

    Google Scholar 

  3. M’halla J, Besbes R, Bouazzi R, Boughammoura S (2007) Ionic condensation of sodium chondroitin sulfate in water-dioxane mixture. J Mol Liq 130:59–69

    Article  Google Scholar 

  4. Boughammoura S, M’halla J (2012) Estimation of the hydrophobic reactivity of SDS micelles by the use of BPh4 anions. J Mol Liq 175:148–161

    Article  CAS  Google Scholar 

  5. Ghazouani A, Boughammoura S, M’halla J (2012) Studies of electrolytic conductivity of some polyelectrolyte solutions importance of the dielectric friction effect at high dilution. J Chem 2013:1–15

    Article  Google Scholar 

  6. Muthukumar M (1997) Dynamics of polyelectrolyte solutions. J Chem Phys 107:2619–2635

    Article  CAS  Google Scholar 

  7. Sélégny E (1974) Polyelectrolytes. D. Reildel Publishing Company, Dordrecht-Holland

    Book  Google Scholar 

  8. Manning GS (1975) Limiting laws for the conductance of the rod model of a salt-free polyelectrolyte solution. J Phys Chem 79:262–265

    Article  CAS  Google Scholar 

  9. Manning GS (1981) Limiting laws and counterion condensation in polyelectrolyte solutions 7 electrophoretic mobility and conductance. J Phys Chem 85:1506–1515

    Article  CAS  Google Scholar 

  10. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118

    Article  CAS  Google Scholar 

  11. Brilliantov NV, Kuznetsov DV, Klein R (1998) Chain collapse counterion condensation in dilute polyelectrolyte solutions. Phys Rev Lett 8:1433–1436

    Article  Google Scholar 

  12. Wandrey C (1999) Concentration regimes in polyelectrolyte solutions. Langmuir 15:4069–4075

    Article  CAS  Google Scholar 

  13. M’halla J, Boughammoura S (2010) Translation dielectric friction and mobility of ellipsoidal polyions. J Mol Liq 157:89–101

    Article  Google Scholar 

  14. M’halla J, Boughammoura S, Ghazouani A (2011) Sharp decrease of the dielectric friction on polyions during conformation transition from pearl-chain to coiled shapes. 32iémeInternational conference on solution chemistry-ICSI, la Grande Motte France

  15. Ghazouani A, Boughammoura S, M’halla J (2014) About the correlation between the mobility of a polyion and that of its counterions. J Adv Chem 10:2558–2574

    Google Scholar 

  16. Vink H (1981) Conductivity of polyelectrolyte in very dilute solutions. J Chem Soc Faraday Trans 77:2439–2449

    Article  CAS  Google Scholar 

  17. Vink H (1984) A new modified Hittorf method for the determination of transport numbers in polyelectrolyte solutions. J Chem Soc Faraday Trans 80:1297–1304

    Article  CAS  Google Scholar 

  18. Vink H (1989) Studies of electrical transport processes in polyelectrolyte solutions. J Chem Soc Faraday Trans 85:699–709

    Article  CAS  Google Scholar 

  19. Robinson RA, Stokes RH (1959) Electrolyte solutions. Butterworths scientific publications, London

    Google Scholar 

  20. Justice JC (1971) An interpretation for the distance parameter of the Fuoss-Onsager conductance equation in the case of ionic association. Electrochim Acta 16:701–712

    Article  CAS  Google Scholar 

  21. Blum L (1975) and (1993) Mean spherical model for asymmetric electrolytes. J Mol Phys 30: 1529–1535. J Mol Phys 47: 2983–2986

  22. Boughammoura S, M’halla J (2014) Translational dielectric friction on a chain of charged spheres. Sci World J :1–15. doi:10.1155/2014/567560

  23. Fuoss R, Accascina F (1969) Electrolytic conductance. Interscience, New York

    Google Scholar 

  24. Michael J, Carrillo Y, Dobrynin V (2010) Detailed molecular dynamics simulations of a model NaPSS in water. J Phys Chem B 114:9391–9399

    Article  Google Scholar 

  25. Lee MJ, Green MM, Mikes F, Morawetz H (2002) NMR spectra of polyelectrolytes in poor solvents are consistent with the pearl necklace model of the chain molecules. Macromolecules 35:4216–4217

    Article  CAS  Google Scholar 

  26. Batzill S, Luxemburger R, Deike R, Weber R (1998) Structural and dynamical properties of aqueous suspensions of NaPSS (HPSS) at very low ionic strength. Eur Phys J B Condens Matter Complex Syst 1:491–501

    Article  CAS  Google Scholar 

  27. Pavlov GM, Gubarev AS, Gavrilova II, Panarin EF (2011) Conformations of sodium poly(styrene-4-sulfonate) macromolecules in solutions with different ionic strengths. Polym Sci 53(11):1003–1011

    CAS  Google Scholar 

  28. Hubbard JB, Douglas JF (1993) Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys Rev E 47:2983–2986

    Article  Google Scholar 

  29. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-diffusion of the small ions. J Chem Phys 51:934–938

    Article  Google Scholar 

  30. Onsager L, Fuoss RM (1932) Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes. J Phys Chem 36:2689–2778

    Article  CAS  Google Scholar 

  31. Zwanzig R (1963) Dielectric friction on a moving ion. J Chem Phys 38:1603–1605

    Article  CAS  Google Scholar 

  32. Hubbard JB, Onsager L (1977) Dielectric dispersion and dielectric friction in electrolyte solutions I and II. J Chem Phys 67:4850–4857, J. B. Hubbard J B (1978). J Chem Phys 68: 1649–1664

    Article  CAS  Google Scholar 

  33. Wolynes PG (1978) Molecular theory of solvated ion dynamics. J Chem Phys 68:473–483

    Article  CAS  Google Scholar 

  34. Manning GS (1967) Molecular theory of counterion conductivity and self-diffusion in polyelectrolyte solutions. J Chem Phys 47:2010–2013

    Article  CAS  Google Scholar 

  35. Huizenga JR, Griegor PF, Wall FT (1950) Electrolytic properties of aqueous solutions of polyacrylic acid and sodium hydroxude. II. Diffusion experiments using radioactive sodium. J Am Chem Soc 72:4228–4232

    Article  CAS  Google Scholar 

  36. Katchalsky A, Alexandrowicz Z, Kedem O (1966) In: Conway BE, Barradas RG (eds) Chemical physics of ionic solutions. John Wiley and Sons, New York, pp 295–346

    Google Scholar 

  37. Hasted JB (1973) Electrolytic solutions aqueous dielectrics. Chapman and Hall, London, pp 136–175

    Google Scholar 

  38. Li D (2014) Surface conductivity measurement. Encycl Microfluid Nanofluid: 1–14. doi:10.1007/978-3-642-27758-0_1494-2

Download references

Acknowledgments

The authors are grateful to the General Direction of Scientific Research of Tunisia (DGRST) for assistance and supporting grants

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalel M’halla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, A., Boughammoura, S. & M’halla, J. New interpretation of the dependence of the conductibility of PSS and PAA polyions with the nature of the counterions. Colloid Polym Sci 293, 2995–3011 (2015). https://doi.org/10.1007/s00396-015-3699-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3699-0

Keywords

Navigation