Skip to main content
Log in

Investigation of the Effect of Temperature, Salt and Solvent Composition on the Micellization Behavior of Tetradecyltrimethylammonium Bromide in the Presence of the Antibiotic Drug Levofloxacin Hemihydrate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Interactions of the fluoroquinolone antibiotic drug levofloxacin hemihydrate (LFH) with tetradecyltrimethylammonium bromide (TTAB) were studied in water and in the presence of additives sodium chloride (NaCl) and ethanol (C2H5OH) at 303.15 to 323.15 K with an interval of 5 K. Only one critical micelle concentration (c*) was obtained for TTAB in water. However, three different critical micelle concentrations \( c_{1}^{*} \) (first break), \( c_{2}^{*} \) (second break, and \( c_{3}^{*} \) (third break) were observed for LFH + TTAB mixtures in all the cases. The c* values for (TTAB + LFH) mixtures in the presence of sodium chloride (NaCl) were lower than those in water. On the contrary, the micellization of TTAB was disfavored by the presence of ethanol and the values of c* for (TTAB + LFH) mixed systems were higher than those in water. The micellization was almost enthalpy controlled for (TTAB + LFH) systems in water, and in the aqueous C2H5OH and NaCl solutions but at some temperatures it became both entropy and enthalpy controlled. The standard state Gibbs energy of transfer (\( \Delta_{\text{tr}} G_{\text{m}}^{\circ} \)), enthalpy of transfer (\( \Delta_{\text{tr}} H_{\text{m}}^{\circ} \)) and entropy of transfer (\( \Delta_{\text{tr}} S_{\text{m}}^{\circ} \)) were also determined and are discussed in detail. TTAB and LFH + TTAB systems exhibit excellent enthalpy–entropy compensation in all the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosen, M.J.: Surfactants and Interfacial Phenomenon, 3rd edn. The City University of New York, Wiley (2004). ISBN 0-471-47818-0

    Book  Google Scholar 

  2. Khan, F., Siddiqui, U.S., Rub, M.A., Khan, I.A., Kabir-ud-Din: Micellization behavior of butanediyl-1,4-bis(dimethyldodecylammonium bromide) gemini surfactant in presence of organic additives. J. Dispers. Sci. Tech. 36, 83–93 (2015)

    Article  CAS  Google Scholar 

  3. Azum, N., Rub, M.A., Asiri, A.M.: Interaction of triblock-copolymer with cationic gemini and conventional surfactants: a physicochemical study. J. Disp. Sci. Technol. 38, 1785–1791 (2017)

    Article  CAS  Google Scholar 

  4. Rub, M.A., Azum, N., Khan, F., Asiri, A.M.: Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: a tensiometry and fluorometry study. J. Chem. Thermodyn. 121, 199–210 (2018)

    Article  CAS  Google Scholar 

  5. Rub, M.A., Azum, N., Khan, F., Asiri, A.M.: Surface, micellar, and thermodynamic properties of antidepressant drug nortriptyline hydrochloride with TX-114 in aqueous/urea solutions. J. Phys. Org. Chem. 30, e3676 (2017)

    Article  CAS  Google Scholar 

  6. Rahman, M., Khan, M.A., Rub, M.A., Hoque, M.A.: Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug. J. Mol. Liq. 223, 716–724 (2016)

    Article  CAS  Google Scholar 

  7. Buckingham, L.E., Balasubramanian, M., Emanuele, R.M., Clodfelter, K.E., Coon, J.S.: Comparison of Solutol HS 15, Cremophor EL and novel ethoxylated fatty acid surfactants as multidrug resistance modification agents. Int. J. Cancer 62, 436–442 (1995)

    Article  CAS  PubMed  Google Scholar 

  8. Nerurkar, M.M., Ho, N.F., Burton, P.S., Vidmar, T.J., Borchardt, R.T.: Mechanistic roles of neutral surfactants on cocurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 86, 813–821 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Fendler, J.H., Fendler, E.J.: Catalysis in Micellar and Macromolecular Systems. Academic Press, New York (1975). ISBN 978-0-12-252850-7

    Google Scholar 

  10. Attwood, D., Florence, A.T.: Surfactant Systems; Their Chemistry, Pharmacy and Biology. Chapman & Hall, New York (1983). https://doi.org/10.1007/978-94-009-5775-6

    Book  Google Scholar 

  11. Kumar, D., Hidayathulla S., Rub, M.A.: Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: Effect of temperature and salt. J. Mol. Liq. 271, 254–264 (2018)

    Article  CAS  Google Scholar 

  12. Kumar, D., Rub, M.A.: Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures. J. Phys. Org. Chem. 29, 394–405 (2016)

    Article  CAS  Google Scholar 

  13. Chauhan, S., Sharma, V., Pathania, L.: Probing effect of maltodextrin on micellar properties of bile salts at varying temperature. J. Mol. Liq. 269, 304–314 (2018)

    Article  CAS  Google Scholar 

  14. McManus, P.S., Stockwell, V.O., Sundin, G.W., Jones, A.L.: Antibiotic use in plant agriculture. Ann. Rev. Phytopathol. 40, 443–465 (2002)

    Article  CAS  Google Scholar 

  15. Hoque, M.A., Khan, M.A., Hossain, M.D.: Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide. J. Chem. Thermodyn. 60, 71–75 (2013)

    Article  CAS  Google Scholar 

  16. Molla, M.R., Rub, M.A., Ahmad, A., Hoque, M.A.: Interaction between tetradecyltrimethylammonium bromide and benzyldimethylhexadecylammonium chloride in aqueous/urea solution at various temperatures: an experimental and theoretical investigation. J. Mol. Liq. 238, 62–70 (2017)

    Article  CAS  Google Scholar 

  17. Kumar, D., Rub, M.A.: Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea. J. Mol. Liq. 238, 389–396 (2017)

    Article  CAS  Google Scholar 

  18. Kumar, K., Patel, B.S., Chauhan, S.: Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures: effect of selected amino acids. J. Chem. Thermodyn. 82, 25–33 (2015)

    Article  CAS  Google Scholar 

  19. Azum, N., Rub, M.A., Asiri, A.M.: Interaction of antipsychotic drug with novel surfactants: micellization and binding studies. Chin. J. Chem. Eng. 26, 566–573 (2018)

    Article  CAS  Google Scholar 

  20. Ropers, M.H., Czichocki, G., Brezesinski, G.: Counterion effect on the thermodynamics of micellization of alkyl sulfates. J. Phys. Chem. B 107, 5281–5288 (2003)

    Article  CAS  Google Scholar 

  21. Diamant, H., Andelman, D.: Kinetics of surfactant adsorption at fluid–fluid interfaces. J. Phys. Chem. 100, 13732–13742 (1996)

    Article  CAS  Google Scholar 

  22. Caetano, W., Tabak, M.: Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulphate (SDS) micelles: electronic absorption and fluorescence studies. J. Colloid Interface Sci. 225, 69–81 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Minatti, E., Zanette, D.: Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity. Colliods Surf. A 113, 237–246 (1996)

    Article  CAS  Google Scholar 

  24. Khan, F., Rub, M.A., Azum, N., Asiri, A.M.: Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant: micellar and thermodynamic investigation. J. Phys. Org. Chem. 31, e3812 (2018)

    Article  CAS  Google Scholar 

  25. Rub, M.A., Asiri, A.M., Khan, J.M., Khan, F., Khan, R.H., Kabir-ud-Din: A study of interaction between antidepressant drug nortriptyline hydrochloride with gelatin. J. Taiwan Inst. Chem. Eng. 45, 2068–2074 (2014)

    Article  CAS  Google Scholar 

  26. Chakraborty, T., Chakraborty, I., Ghosh, S.: Sodium carboxymethylellulose–CTAB interaction: a detailed thermodynamic study of polymer–surfactant interaction with opposite charges. Langmuir 22, 9905–9913 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz, C.C.: Thermodynamics of micellization of tetradecyltrimethylammonium bromide in ethylene glycol ± water binary mixtures. Colloid Polym. Sci. 277, 701–707 (1999)

    Article  Google Scholar 

  28. Ruiz, C.C., Aguiar, J.: Mixed micellization of octaoxyethylenemonododecyl ether and n-alkyltrimethylammonium bromides. Colloids Surf. A 224, 221–230 (2003)

    Article  CAS  Google Scholar 

  29. Garcı́a-Mateos, I., Pérez, S., Velázquez, M.M.: Interaction between cetyl pyridinium chloride and water-soluble polymers in aqueous solutions. J. Colloid Interface Sci. 194, 356–363 (1997)

    Article  Google Scholar 

  30. Chauhan, S., Kaur, M., Rana, D.S., Chauhan, M.S.: Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts. J. Chem. Eng. Data 61, 3770–3778 (2016)

    Article  CAS  Google Scholar 

  31. Pérez-Rodríguez, M., Prieto, G., Rega, C., Varela, L.M., Sarmiento, F., Mosquera, V.: A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 14, 4422–4426 (1998)

    Article  Google Scholar 

  32. Tsubone, K.Y., Arakawa, Y., Rosen, M.J.: Structural effects on surface and micellar properties of alkanediyl-alpha, omega-bis(sodium N-acyl-beta-alaninate) gemini surfactants. J. Colloid Interface Sci. 262, 516–524 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Carale, T.R., Pham, Q.T., Blankschtein, D.: Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 10, 109–121 (1994)

    Article  CAS  Google Scholar 

  34. Hoque, M.A., Patoary, M.O.F., Rashid, M.M., Molla, M.R., Rub, M.A.: Physico-chemical investigation of the mixed micelle formation between tetradecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solution of sodium chloride. J. Solution Chem. 46, 682–703 (2017)

    Article  CAS  Google Scholar 

  35. Zhang, H., Zhu, Y., Zhang, K., Hou, T., Liu, H., Cui, M., Li, G., Yu, L.: Studies on the CMC and thermodynamic functions of a cationic surfactant in DMF/long-chain alcohol systems using a microcalorimetric method. J. Solution Chem. 38, 187–198 (2009)

    Article  CAS  Google Scholar 

  36. Mukerjee, P., Korematsu, K., Okawauchi, M., Sugihara, G.: Effect of temperature on the electrical conductivity and the thermodynamics of micelle formation of sodium perfluorooctanoate. J. Phys. Chem. 89, 5308–5312 (1985)

    Article  CAS  Google Scholar 

  37. Ray, A., Nemethy, G.: Micelle formation by nonionic detergents in water–ethylene glycol mixtures. J. Phys. Chem. 75, 809–815 (1971)

    Article  Google Scholar 

  38. Sidim, T., Acar, G.: Alcohols effect on critical micelle concentration of polysorbate 20 and cetyltrimethyl ammonium bromide mixed solutions. J. Surfact. Deterg. 16, 601–607 (2013)

    Article  CAS  Google Scholar 

  39. Akhter, M.S.: Effect of solubilization of alcohols on critical micelle concentration of non-aqueous micellar solutions. Colloids Surf. A 157, 203–210 (1999)

    Article  CAS  Google Scholar 

  40. Khan, F., Rub, M.A., Azum, N., Kumar, D., Asiri, A.M.: Interaction of an amphiphilic drug and sodium bis(2-ethylhexyl)sulfosuccinate at low concentrations in the absence and presence of sodium chloride. J. Solution Chem. 44, 1937–1961 (2015)

    Article  CAS  Google Scholar 

  41. Mata, J., Varade, D., Bahadur, P.: Aggregation behaviour of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  42. Kim, H.U., Lim., K.H.: A model on the temperature dependence of critical micelle concentration. Colloids Surf. A 235, 121–128 (2004)

    Article  CAS  Google Scholar 

  43. Rahman, M., Khan, M.A., Rub, M.A., Hoque, M.A., Asiri, A.M.: Investigation of the effect of various additives on the clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate in absence and presence of ceftriaxone sodium trihydrate drug. J. Chem. Eng. Data 62, 1464–1474 (2017)

    Article  CAS  Google Scholar 

  44. Jalali, F., Shamsipur, M., Alizadeh, N.: Conductivity study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water + cosolvent). J. Chem. Thermodyn. 32, 755–765 (2000)

    Article  CAS  Google Scholar 

  45. Owoyomi, O., Ige, J., Soriyan, O.O.: Thermodynamics of n-alkyltriphenylphosphnium bromides: a conductometric study. Chem. Sci. J. 25, 1–13 (2011)

    Google Scholar 

  46. Vamvaca, K., Jelesarov, I., Hilvert, D.: Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J. Mol. Liq. 382, 971–977 (2008)

    Article  CAS  Google Scholar 

  47. Azum, N., Rub, M.A., Asiri, A.M.: Micellization and interfacial behavior of the sodium salt of ibuprofen-BRIJ-58 in aqueous/brine solutions. J. Solution Chem. 45, 791–803 (2016)

    Article  CAS  Google Scholar 

  48. Rub, M.A., Azum, N., Asiri, A.M.: Binary mixtures of sodium salt of ibuprofen and selected bile salts: interface, micellar, thermodynamic, and spectroscopic study. J. Chem. Eng. Data 62, 3216–3228 (2017)

    Article  CAS  Google Scholar 

  49. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  50. Rub, M.A., Azum, N., Khan, S.B., Khan, F., Asiri, A.M.: Physicochemical properties of amphiphilic drug and anionic surfactant mixtures: experimental and theoretical approach. J. Disp. Sci. Technol. 36, 521–531 (2015)

    Article  CAS  Google Scholar 

  51. Rub, M.A., Khan, F., Kumar, D., Asiri, A.M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixtures at different temperatures and compositions. Tenside Surf. Deterg. 52, 236–244 (2015)

    Article  CAS  Google Scholar 

  52. Kumar, D., Rub, M.A.: Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution. Tenside Surf. Deterg. 52, 464–472 (2015)

    Article  CAS  Google Scholar 

  53. Rub, M.A., Asiri, A.M., Kumar, D., Azum, N., Khan, F.: Temperature dependant mixed micellization behavior of a drug–AOT mixture in an aqueous medium. Acta Phys. Chim. Sin. 30, 699–707 (2014)

    CAS  Google Scholar 

  54. Chen, L.J., Lin, S.Y., Huang, C.C., Chen, E.M.: Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf. A 135, 175–181 (1998)

    Article  CAS  Google Scholar 

  55. Nalwa, H.S.: Handbook of Surfaces and Interfaces of Materials, vol. 3, p. 405. Academic Press (2001). ISBN: 978-0-12-513910-6

  56. Khan, F., Sheikh, M.S., Rub, M.A., Azum, N., Asiri, A.M.: Antidepressant drug amitriptyline hydrochloride (AMT) interaction with anionic surfactant sodium dodecyl sulfate in aqueous/brine/urea solutions at different temperatures. J. Mol. Liq. 222, 1020–1030 (2016)

    Article  CAS  Google Scholar 

  57. Rub, M.A., Sheikh, M.S., Khan, F., Khan, S.B., Asiri, A.M.: Bile salts aggregation behavior at various temperatures under the influence of amphiphilic drug imipramine hydrochloride in aqueous medium. Z. Phys. Chem. 228, 747–767 (2014)

    Article  CAS  Google Scholar 

  58. Vamvaca, K., Jelesarov, I., Hilvert, D.: Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J. Mol. Biol. 382, 971–977 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  PubMed  Google Scholar 

  60. Shivaji, S.K., Rakshit, A.K.: Investigation of the properties of decaoxyethylene n-dodecyl ether, C12E10, in the aqueous sugar-rich region. J. Surf. Deterg. 7, 305–316 (2004)

    Article  Google Scholar 

  61. Rakshit, A.K., Sharma, B.: The effect of amino acids on the surface and thermodynamic properties of poly[oxyethylene(10)]lauryl ether in aqueous solution. Colloid Polym. Sci. 281, 45–51 (2003)

    Article  CAS  Google Scholar 

  62. Jha, R., Ahluwalia, J.C.: Thermodynamics of micellization of some decyl poly(oxyethyleneglycol) ether in aqueous urea solution. J. Chem. Soc. Faraday Trans. 89, 3465–3469 (1993)

    Article  CAS  Google Scholar 

  63. Chen, L.J., Lin, S.Y., Huang, C.C.: Effect of hydrophobic chain length of surfactants on enthalpy–entropy compensation of micellization. J. Phys. Chem. 102, 4350–4356 (1998)

    Article  CAS  Google Scholar 

  64. Lumry, R., Rajender, S.: Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water. Biopolymers 9, 1125–1127 (1970)

    Article  CAS  PubMed  Google Scholar 

  65. Sugihara, G., Hisatomi, M.: Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J. Colloid Interface Sci. 219, 31–36 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to The ACME Laboratories Ltd., BD for providing the standard sample of LFH as a gift item to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Anamul Hoque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.A., Molla, M.R., Amin, M.R. et al. Investigation of the Effect of Temperature, Salt and Solvent Composition on the Micellization Behavior of Tetradecyltrimethylammonium Bromide in the Presence of the Antibiotic Drug Levofloxacin Hemihydrate. J Solution Chem 48, 105–124 (2019). https://doi.org/10.1007/s10953-019-00850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00850-w

Keywords

Navigation