Skip to main content
Log in

Interaction of an Amphiphilic Drug and Sodium Bis(2-ethylhexyl)sulfosuccinate at Low Concentrations in the Absence and Presence of Sodium Chloride

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present study mixed micelles of the amphiphilic phenothiazine drug promazine hydrochloride (PMZ) and the anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) have been studied using conductometry at different compositions and temperatures in aqueous as well as aqueous electrolyte (25 mmol·kg−1 NaCl) solutions to determine various physicochemical properties of the solutions. The experimental and ideal critical micelle concentration (CMC and CMC id) values suggest attractive interactions in PMZ–AOT mixed systems. The negative values of interaction parameter (β) obtained from regular solution theory indicate synergistic interactions; the negative values of β decrease further with the addition of salt. From the CMC values obtained as a function of temperature, various other thermodynamic properties have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tanford, C.: The Hydrophobic Effect. Formation of Micelles and Biological Membranes, 2nd edn. Wiley, New York (1980)

    Google Scholar 

  2. Attwood, D., Tolley, J.A.: Self-association of analgesics in aqueous solution: association models for codeine, oxycodone, ethylmorphine and pethidine. J. Pharm. Pharmacol. 32, 761–765 (1980)

    Article  CAS  Google Scholar 

  3. Rub, M.A., Asiri, A.M., Khan, J.M., Khan, R.H., Kabir-ud, D.: A study of interaction between antidepressant drug nortriptyline hydrochloride with gelatin. J. Taiwan Inst. Chem. Eng. 45, 2068–2074 (2014)

    Article  CAS  Google Scholar 

  4. Hwang, P.M., Vogel, J.H.: Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76, 235–246 (1998)

    Article  CAS  Google Scholar 

  5. Taboada, P., Attwood, D., Ruso, J.M., Garcia, M., Sarmiento, F., Mosquera, V.: Influence of molecular structure on the ideality of mixing in micelles formed in binary mixtures of surface-active drugs. J. Colloid Interface Sci. 216, 270–275 (1999)

    Article  CAS  Google Scholar 

  6. Schreier, S., Malheiros, S.V.P., de Paula, E.: Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta 1508, 210–234 (2000)

    Article  CAS  Google Scholar 

  7. Attwood, D., Florence, A.T., Gillan, J.M.N.: Micellar properties of drugs: properties of micellar aggregates of phenothiazines and their aqueous solutions. J. Pharm. Sci. 63, 988–993 (1974)

    Article  CAS  Google Scholar 

  8. Atherton, A.D., Barry, B.W.: Micellar properties of phenothiazine drugs: a laser light scattering study. J. Colloid Interface Sci. 106, 479–489 (1985)

    Article  CAS  Google Scholar 

  9. Rub, M.A., Asiri, A.M., Khan, J.M., Khan, R.H., Kabir-ud, D.: Interaction of gelatin with promethazine hydrochloride: conductimetry, tensiometry and circular dichroism studies. J. Mol. Struc. 1050, 35–42 (2013)

    Article  Google Scholar 

  10. Canto, G.S., Dalmora, S.L., Oliveira, A.G.: Piroxicam encapsulated in liposomes: characterization and in vivo evaluation of topical anti-inflammatory effect. Drug Dev. Ind. Pharm. 25, 1235–1239 (1999)

    Article  CAS  Google Scholar 

  11. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001)

    Article  CAS  Google Scholar 

  12. Fernandez, A.M., Van Derpoorten, K., Dasnois, L., Lebtahi, K., Dubois, V., Lobl, T.J., Gangwar, S., Oliyai, C., Lewis, E.R., Shochat, D., Trouet, A.: N-Succinyl-(beta-alanyl-L-leucyl-L-alanyl-L-leucyl)doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. J. Med. Chem. 44, 3750–3753 (2001)

    Article  CAS  Google Scholar 

  13. Rangel-Yagui, C.O., Pessoa Jr, A., Tavares, L.C.: Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 8, 147–165 (2005)

    CAS  Google Scholar 

  14. Torchilin, V.P.: Structure and design of polymeric surfactant–based drug delivery systems. J. Control Release 73, 137–172 (2001)

    Article  CAS  Google Scholar 

  15. Yang, C., Chen, F., Luo, S., Xie, G., Zeng, G., Fan, C.: Effects of surfactants and salt on Henry’s constant of n-hexane. J. Hazard. Mater. 175, 187–192 (2010)

    Article  CAS  Google Scholar 

  16. Dar, A.A., Rather, G.M., Ghosh, S., Das, A.R.: Micellization and interfacial behavior of binary and ternary mixtures of model cationic and nonionic surfactants in aqueous NaCl medium. J. Colloid Interface Sci. 322, 572–581 (2008)

    Article  CAS  Google Scholar 

  17. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc., Faraday Trans. 1(71), 1327–1334 (1975)

    Article  Google Scholar 

  18. Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)

    Article  CAS  Google Scholar 

  19. Azum, N., Rub, M.A., Asiri, A.M.: Experimental and theoretical approach to mixed surfactant system of cationic gemini surfactant with nonionic surfactant in aqueous medium. J. Mol. Liq. 196, 14–20 (2014)

    Article  CAS  Google Scholar 

  20. Rub, M.A., Kumar, D., Azum, N., Khan, F., Asiri, A.M.: Study of the interaction between promazine hydrochloride and surfactant (conventional/gemini) mixtures at different temperatures. J. Solution Chem. 43, 930–949 (2014)

    Article  Google Scholar 

  21. Rub, M.A., Azum, N., Kumar, D., Asiri, A.M., Marwani, H.M.: Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. J. Chem. Thermodyn. 74, 91–102 (2014)

    Article  CAS  Google Scholar 

  22. Vethamuthu, M.S., Almgren, M., Karlsson, G., Bahadur, P.: Effect of sodium chloride and varied alkyl chain length on aqueous cationic surfactant–bile salt systems. Cryo-TEM and fluorescence quenching studies. Langmuir 12, 2173–2185 (1996)

    Article  Google Scholar 

  23. Mandal, A.B., Moulik, S.P.: In: Mittal, K.L., Fendler, E.J. (eds.) Solution Behavior of Surfactants. Plenum Press, New York (1982)

    Google Scholar 

  24. Elworthy, P.H., Florence, A.T., Macfarlane, G.B.: Solubilization by Surface-Active Agents and Its Application in Chemistry and Biological Sciences. Chapman and Hall, Suffolk (1968)

    Google Scholar 

  25. Chakraborty, A., Chakraborty, S., Saha, S.K.: Temperature dependant micellization of AOT in aqueous medium: effect of the nature of counterions. J. Dispers. Sci. Technol. 28, 984–989 (2007)

    Article  CAS  Google Scholar 

  26. Chatterjee, A., Moulik, S.P., Sanyal, S.K., Mishra, B.K., Puri, P.M.: Thermodynamics of micelle formation of ionic surfactants: a critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements. J. Phys. Chem. B 105, 12823–12831 (2001)

    Article  CAS  Google Scholar 

  27. Rub, M.A., Azum, N., Khan, S.B., Khan, F., Asiri, A.M.: Physicochemical properties of amphiphilic drug and anionic surfactant mixtures: experimental and theoretical approach. J. Dispers. Sci Technol. 36, 521–531 (2015)

    Article  CAS  Google Scholar 

  28. Para, G., Jarek, E., Warszynski, P.: The Hofmeister series effect in adsorption of cationic surfactants–theoretical description and experimental results. Adv. Colloid Interface Sci. 122, 39–55 (2006)

    Article  CAS  Google Scholar 

  29. Shamsipur, M., Alizadeh, N., Gharibi, H.: Physicochemical studies of the hexadecylpyridinium bromide micellar system in the presence of various concentrations of sodium bromide using a surfactant-selective electrode. Indian J. Chem. 36A, 1031–1037 (1997)

    CAS  Google Scholar 

  30. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley, New York (2004)

    Book  Google Scholar 

  31. Akhtar, F., Hoque, M.A., Khan, M.A.: Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate. J. Chem. Thermodyn. 40, 1082–1086 (2008)

    Article  CAS  Google Scholar 

  32. Hoque, M.A., Khan, M.A., Hossain, M.D.: Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide. J. Chem. Thermodyn. 60, 71–75 (2013)

    Article  CAS  Google Scholar 

  33. Hoque, M.A., Hossain, M.D., Khan, M.A.: Interaction of cephalosporin drugs with dodecyltrimethylammonium bromide. J. Chem. Thermodyn. 63, 135–141 (2013)

    Article  CAS  Google Scholar 

  34. Prasad, M., Chakraborty, I., Rakshit, A.K., Moulik, S.P.: Critical evaluation of micellization behavior of nonionic surfactant MEGA 10 in comparison with ionic surfactant tetradecyltriphenylphosphonium bromide studied by microcalorimetric method in aqueous medium. J. Phys. Chem. B 110, 9815–9821 (2006)

    Article  CAS  Google Scholar 

  35. La Mesa, C.: Dependence of critical micelle concentrations on intensive variables: a reduced variables analysis. J. Phys. Chem. 94, 323–326 (1990)

    Article  Google Scholar 

  36. Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)

    Article  CAS  Google Scholar 

  37. Islam, M.N., Kato, T.: Temperature dependence of the surface phase behavior and micelle formation of some nonionic surfactants. J. Phys. Chem. B 107, 965–971 (2003)

    Article  CAS  Google Scholar 

  38. Lopez-Fontan, J.L., Costa, V., Ruso, J.M., Prieto, G., Sarmiento, F.: Electrical conductivities and critical micelle concentrations (determined by the local polynomial regression method) of imipramine and clomipramine hydrochlorides from (283 to 313) K. J. Chem. Eng. Data 49, 1008–1012 (2004)

    Article  CAS  Google Scholar 

  39. Rub, M.A., Sheikh, M.S., Khan, F., Khan, S.B., Asiri, A.M.: Bile salts aggregation behavior at various temperatures under the influence of amphiphilic drug imipramine hydrochloride in aqueous medium. Z. Phys. Chem. 228, 747–767 (2014)

    Article  Google Scholar 

  40. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Colloid Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  41. Asakawa, T., Kitano, H., Ohta, A., Miyagishi, S.: Priority communication convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J. Colloid Interface Sci. 242, 284–287 (2001)

    Article  CAS  Google Scholar 

  42. Iijima, H., Kato, T., Soderman, A.: Variation in degree of counterion binding to cesium perfluorooctanoate micelles with surfactant concentration studied by 133Cs and 19F NMR. Langmuir 16, 318–323 (2000)

    Article  CAS  Google Scholar 

  43. Gorski, N., Kalus, J.: Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17, 4211–4215 (2001)

    Article  CAS  Google Scholar 

  44. Chauhan, M.S., Sharma, K., Kumar, G., Chauhan, S.: A conductometric study of dimethylsulfoxide effect on micellization of sodium dodecyl sulfate in dilute aqueous electrolyte solutions. Colloid Surf. A 221, 135–140 (2003)

    Article  CAS  Google Scholar 

  45. Rubingh, D.N.: In: Mittal, K.L. (ed.) Solution Chemistry of Surfactants. Plenum, New York (1979)

    Google Scholar 

  46. Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)

    Article  CAS  Google Scholar 

  47. Rodenas, V., Valiente, M., Villafruela, M.S.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl ether/hexadecyltrimethylammonium bromide micelles. J. Phys. Chem. B 103, 4549–4554 (1999)

    Article  CAS  Google Scholar 

  48. Lange, H., Beck, K.H.: Zur Mizellbildung in Mischlösungen homologer und nichthomologer. Kolloid Z. Z. Polym. 251, 424–431 (1973)

    Article  CAS  Google Scholar 

  49. Singh, O.G., Ismail, K.: Effect of sodium chloride on the aggregation, adsorption and counterion binding behavior of mixtures of sodium dioctylsulfosuccinate and sodium dodecylsulfate in water. Colloids Surf. A 414, 209–215 (2012)

    Article  CAS  Google Scholar 

  50. Clint, J.H.: Surfactant Aggregation. Blackie/Chapman and Hall, New York (1992)

    Book  Google Scholar 

  51. Nusselder, J.J.H., Engberts, J.B.F.N.: Toward a better understanding of the driving force for micelle formation and micellar growth. J. Colloid Interface Sci. 148, 353–361 (1992)

    Article  CAS  Google Scholar 

  52. Kresheck, G.C.: In: Franks, F. (ed.) Water. A Comprehensive Treatise. Plenum, New York (1995)

    Google Scholar 

  53. Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloidal entities. J. Chem. Soc., Faraday Trans. 87, 3529–3535 (1991)

    Article  CAS  Google Scholar 

  54. Rub, M.A., Asiri, A.M., Azum, N., Kumar, D., Khan, F.: Temperature dependant mixed micellization behavior of a drug–AOT mixture in an aqueous medium. Acta Phys.-Chim. Sin. 30, 699–707 (2014)

    CAS  Google Scholar 

  55. Rub, M.A., Khan, F., Kumar, D., Asiri, A.M.: Study of mixed micelles of promethazine hydrochloride (PMT) and nonionic surfactant (TX-100) mixtures at different temperature and composition. Tenside Surfactants Deterg. 52, 236–244 (2015)

    Article  Google Scholar 

  56. Azum, N., Rub, M.A., Asiri, A.M.: Analysis of surface and bulk properties of amphiphilic drug ibuprofen and surfactant mixture in the absence and presence of electrolyte. Colloids Surf. B 121, 158–164 (2014)

    Article  CAS  Google Scholar 

  57. Javadian, S., Gharibi, H., Bromand, Z., Sohrabi, B.: Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants. J. Colloid Interface Sci. 318, 449–456 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Center of Excellence for Advanced Materials Research and Chemistry Department, King Abdulaziz University, Jeddah are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Rub, M.A., Azum, N. et al. Interaction of an Amphiphilic Drug and Sodium Bis(2-ethylhexyl)sulfosuccinate at Low Concentrations in the Absence and Presence of Sodium Chloride. J Solution Chem 44, 1937–1961 (2015). https://doi.org/10.1007/s10953-015-0386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0386-1

Keywords

Navigation