Skip to main content
Log in

Synthesis, Micellar and Surface Properties of Cationic Trisiloxane Surfactants with Different Siloxane Hydrophobic Groups

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Three cationic trisiloxane surfactants, 1-methyl-1-[bis(trimethylsiloxy)methyl]silyl-propylpyrrolidinium chloride (Si3pyCl), 1-methyl-1-[bis(triethylsiloxy)methyl]silyl-propylpyrrolidinium chloride (Et-Si3pyCl), and 1-methyl-1-[bis(vinyldimethylsiloxy)methyl]silylpropylpyrrolidinium chloride (Vi-Si3pyCl) were synthesized. The aggregation behavior of the trisiloxane surfactants with different siloxane hydrophobic groups in aqueous solution was investigated by surface tension and electrical conductivity measurements. The structures of hydrophobic groups of the trisiloxane surfactants can obviously influence their surface activities and thermodynamics. All the three cationic trisiloxane surfactants have excellent surface activity. Owing to the steric hindrance of hydrophobic groups, the CMC values increase following the order Et-Si3PyCl < Vi-Si3PyCl < Si3PyCl. The \(\Delta G_{\text{m}}^{\text{o}}\) values increase in the order Et-Si3PyCl > Vi-Si3PyCl > Si3PyCl, attributed to the decrease in the hydrophobic effect. The micellization processes of these surfactants are entropy-driven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill, R.M.: Silicone Surfactants. Marcel Dekker, New York (1999)

    Google Scholar 

  2. Hill, R.M.: Silicone surfactants—New development. Curr. Opin. Colloid Interface Sci. 7, 255–261 (2002)

    Article  CAS  Google Scholar 

  3. Peter, J.G.: Organosilicon surfactants as adjuvants for agrochemicals. Pestic. Sci. 38, 103–122 (1993)

    Article  Google Scholar 

  4. Churaev, N.V., Esipova, N.E., Hill, R.M., Sobolev, V.D., Starov, V.M., Zorin, Z.M.: The superspreading effect of trisiloxane surfactant solutions. Langmuir 17, 1338–1348 (2001)

    Article  CAS  Google Scholar 

  5. Hill, R.M., Svitova, T., Smirnova, Y., Stuermer, A.: Wetting and interfacial transitions in dilute solutions of trisiloxane surfactants. Langmuir 14, 5023–5031 (1998)

    Article  Google Scholar 

  6. Harald, W., Knudsen, K.D.: Microstructures in aqueous solutions of a polyoxyethylene trisiloxane surfactant and a cosurfactant studied by SANS and NMR self-diffusion. Langmuir 24, 10637–10645 (2008)

    Article  Google Scholar 

  7. Bonnington, L., Henderson, S.W., Zabkiewicz, J.A.: Characterization of synthetic and commercial trisiloxane surfactant materials. Appl. Organomet. Chem. 18, 28–38 (2004)

    Article  CAS  Google Scholar 

  8. Du, Z.P., Li, E., Cao, Y., Li, X., Wang, G.: Synthesis of trisiloxane-tailed surface active ionic liquids and their aggregation behavior in aqueous solution. Colloids Surf. A 441, 744–751 (2014)

    Article  CAS  Google Scholar 

  9. Li, P., Du, Z.P., Ma, X.Y., Wang, G.Y., Li, G.J.: Synthesis, adsorption and aggregation properties of trisiloxane room-temperature ionic liquids. J. Mol. Liq. 192, 38–43 (2014)

    Article  CAS  Google Scholar 

  10. Qin, J.Q., Du, Z.P., Ma, X.Y., Zhu, Y.Y., Wang, G.Y.: Effect of siloxane backbone length on butynediol-ethoxylate based polysiloxanes. J. Mol. Liq. 214, 54–58 (2016)

    Article  CAS  Google Scholar 

  11. Wang, G.Y., Li, X., Du, Z.P., Li, E.Z., Li, P.: Butynediol-ethoxylate based trisiloxane: structural characterization and physico-chemical properties in water. J. Mol. Liq. 197, 197–203 (2014)

    Article  CAS  Google Scholar 

  12. Sakai, K., Tamura, M., Umezawa, S., Takamatsu, Y., Torigoe, K., Yoshimura, T., Esumi, K., Sakai, H.: Adsorption characteristics of sugar-based monomeric and gemini surfactants at the silica/aqueous solution interface. Colloids Surf. A 328, 100–106 (2008)

    Article  CAS  Google Scholar 

  13. EL-Sukkary, M., Ismail, D., Rayes, S.E., Saad, M.: Synthesis, characterization and surface properties of amino-glycopolysiloxane. J. Ind. Eng. Chem. 20, 3342–3348 (2014)

    Article  CAS  Google Scholar 

  14. Zhao, X.H., Liang, W.P., An, D., Ye, Z.W.: Synthesis and properties of tetrasiloxane Gemini imidazolium surfactants. Colloid Polym. Sci. 294, 491–500 (2016)

    Article  CAS  Google Scholar 

  15. Tan, J.L., Ma, D.P., Feng, S.Y., Zhang, C.Q.: Effect of headgroups on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloids Surf. A 417, 146–153 (2013)

    Article  CAS  Google Scholar 

  16. Tan, J.L., Zhao, P.J., Ma, D.P., Feng, S.Y., Zhang, C.Q.: Effect of hydrophobic chains on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloid Polym. Sci. 291, 1487–1494 (2013)

    Article  CAS  Google Scholar 

  17. Tan, J.L., Feng, S.Y.: Effect of counterions on micellization of pyrrolidinium based silicone ionic liquids in aqueous solutions. J. Chem. Eng. Data 59, 1830–1834 (2014)

    Article  CAS  Google Scholar 

  18. Fang, L.Y., Tan, J.L., Zheng, Y., Li, H.N., Li, C.W., Feng, S.Y.: Effect of organic salts on the aggregation behavior of tri-(trimethylsiloxy)silylpropylpyridinium chloride in aqueous solution. Colloids Surf. A 509, 48–55 (2016)

    Article  CAS  Google Scholar 

  19. Fang, L.Y., Tan, J.L., Zheng, Y., Yang, G., Yu, J.T., Feng, S.Y.: Synthesis, aggregation behavior of novel cationic silicone surfactants in aqueous solution and their application in metal extraction. J. Mol. Liq. 231, 134–141 (2017)

    Article  CAS  Google Scholar 

  20. Czajka, A., Hazell, G., Eastoe, J.: Surfactants at the design limit. Langmuir 31, 8205–8217 (2015)

    Article  CAS  Google Scholar 

  21. Zhang, S.H., Yan, H., Zhao, M.W., Zheng, L.Q.: Aggregation behavior of gemini pyrrolidine-based ionic liquids 1,1′-(butane-1,4-diyl)bis(1-alkylpyrrolidinium) bromide ([Cnpy-4-Cnpy][Br 2]) in aqueous solution. J. Colloid Interf. Sci. 372, 52–57 (2012)

    Article  CAS  Google Scholar 

  22. Brown, P., Butts, C., Dyer, R., Eastoe, J., Grill, I., Guittard, F., Rogers, S.: Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir 27, 4563–4571 (2011)

    Article  CAS  Google Scholar 

  23. Dong, B., Zhao, X.Y., Zheng, L.Q., Inoue, T.: Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf. A 317, 666–672 (2008)

    Article  CAS  Google Scholar 

  24. Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim. Acta 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  25. Jaycock, M.J., Parfitt, G.D.: Chemistry of Interfaces. Wiley, New York (1981)

    Google Scholar 

  26. Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, New York (1989)

    Google Scholar 

  27. Rao, K.S., Singh, T., Trivedi, T.J., Kumar, A.: Aggregation behavior of amino acid ionic liquid surfactants in aqueous media. J. Phys. Chem. B 115, 13847–13853 (2011)

    Article  Google Scholar 

  28. Shi, L.J., Li, N., Yan, H., Gao, Y.A., Zheng, L.Q.: Aggregation behavior of long-chain N-aryl imidazolium bromide in aqueous solution. Langmuir 27, 1618–1625 (2011)

    Article  CAS  Google Scholar 

  29. Zhang, Q., Gao, Z.N., Xu, F.S., Tai, X.J.: Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: an electrical conductivity study. J. Colloid Interface Sci. 371, 73–81 (2012)

    Article  CAS  Google Scholar 

  30. Tsubone, K., Arakawa, Y., Rosen, M.J.: Structural effects on surface and micellar properties of alkanediyl-α, ω-bis(sodium N-acyl-β-alaninate) gemini surfactants. J. Colloid Interface Sci. 262, 516–524 (2003)

    Article  CAS  Google Scholar 

  31. Olutas, E.B., Aamis, M.J.: Thermodynamic parameters of some partially fluorinated and hydrogenated amphiphilic enantiomers and their racemates in aqueous solution. Chem. Thermodyn. 47, 144–153 (2012)

    Article  Google Scholar 

  32. Zieliński, R.: Effect of temperature on micelle formation in aqueous NaBr solutions of octyltrimethylammonium bromide. J. Colloid Interface Sci. 235, 201–209 (2001)

    Article  Google Scholar 

  33. Wu, S.Y., Yan, Z.N., Wen, X.L., Xu, C.Y., Pan, Q.: Conductometric and fluorescence probe investigations of molecular interactions between dodecyltrimethylammonium bromide and dipeptides. Colloid Polym. Sci. 292, 2775–2783 (2014)

    Article  CAS  Google Scholar 

  34. Kiràly, Z., Dekàny, I.: A thermometric yitration study on the micelle formation of sodium decyl sulfate in water. J. Colloid Interface Sci. 242, 214–219 (2001)

    Article  Google Scholar 

  35. Šarac, B., Bešter-Rogac, M.: Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J. Colloid Interf. Sci. 338, 216–221 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21563016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglin Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Lin, M. & Ye, Z. Synthesis, Micellar and Surface Properties of Cationic Trisiloxane Surfactants with Different Siloxane Hydrophobic Groups. J Solution Chem 47, 2082–2093 (2018). https://doi.org/10.1007/s10953-018-0826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0826-9

Keywords

Navigation