Skip to main content
Log in

Synthesis and properties of tetrasiloxane Gemini imidazolium surfactants

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two tetrasiloxane Gemini imidazolium surfactants with methylene spacer groups ([Si4-s-Si4im]Cl2, s = 4, 6) were synthesized and characterized by 1H NMR and ESI-MS spectrum. The surface activity and thermodynamic properties in aqueous solution among three categories of surfactants, including [Si4-s-Si4im]Cl2, the corresponding monomer ([Si4mim]Cl) and hydrocarbon-based Gemini imidazolium surfactant ([C14-4-C14im]Cl2), were compared by surface tension and electrical conductivity methods. A series of surface activity parameters, including cmc, γ cmc, π cmc, pc20, Γ max and A min, and the adsorption isotherms were obtained from the surface tension plots. The results indicated that the tetrasiloxane Gemini imidazolium surfactant with the longer spacer group has the higher capacity to form micelles but lower efficiency to reduce surface tension. Besides, the cmc value of [Si4-s-Si4im]Cl2 was about one order of magnitude lower than that of [Si4mim]Cl. The tetrasiloxane-based surfactants have the higher capacity to low the surface tension than the hydrocarbon-based surfactant. The adsorption isotherms of the tetrasiloxane-based surfactants are similar to those of conventional hydrocarbon-based surfactants. The thermodynamic parameters of micellization process, namely, the standard Gibbs free energy (ΔG m θ), enthalpy (ΔH m θ) and entropy (ΔS m θ) originated from the electrical conductivity measurements at five different temperatures, suggested that the micellization of [Si4-s-Si4im]Cl2 and [C14-4-C14im]Cl2 is entropy-driven process whereas aggregation of [Si4mim]Cl is enthalpy-driven process at the whole investigated temperatures. The dynamic light scattering results indicate that the aggregation size of [Si4-4-Si4im]Cl2 (113.6 nm) is larger than [Si4-6-Si4im]Cl2 (101.7 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill RM (1999) Silicone surfactants. Marcel Dekker, New York, pp 5–10

    Google Scholar 

  2. Hill RM (2002) Colloid Interface Sci 7:255–261

    Article  CAS  Google Scholar 

  3. Hill RM (1998) Colloid Interface Sci 3:247–254

    Article  CAS  Google Scholar 

  4. Somasundaran P, Mehta SC, Purohit P (2006) Adv Colloid Interface Sci 128:103–109

    Article  Google Scholar 

  5. Smid-Korbar J, Kristi J, Stare M (1990) Int J Cosmet Sci 12:135–139

    Article  CAS  Google Scholar 

  6. Svitove T, Hoffmann H, Hill RM (1996) Langmuir 12:1712–1721

    Article  Google Scholar 

  7. Hill RM, He M, Davis HT, Scriven LE (1994) Langmuir 10:1724–1734

    Article  CAS  Google Scholar 

  8. Peter JG (1993) Pesticide Sci 38:103–122

    Article  Google Scholar 

  9. Zhang XD, Macosko CW, Davis HT, Nikolov AD (1999) J Colloid Interface Sci 215:270–279

    Article  CAS  Google Scholar 

  10. Policello GA, Leatherman MD, Peng W, Rajaraman et al. ZJ (2007) U.S. Patent 20070184005

  11. Hill RM, Svitova T, Smirnova Y, Stuermer A (1998) Langmuir 14:5023–5031

    Article  Google Scholar 

  12. Hill RM, Churaev V, Esipova NE, Sobolev VD (2001) Langmuir 17:1338–1348

    Article  Google Scholar 

  13. Harald W, Knudsen KD (2008) Langmuir 24:10637–10645

    Article  Google Scholar 

  14. Natalia I, Victor S, Daniel J, Nidal H, Ramon R (2009) Langmuir 25:3564

    Article  Google Scholar 

  15. Svitova TF, Hill RM, Radke CJ (2001) Langmuir 17:335

    Article  CAS  Google Scholar 

  16. Li X, Washenberger RM, Scriven LE, Davis HT (1999) Langmuir 15:2278

    Article  CAS  Google Scholar 

  17. Peng ZL, Wu Q, Cai T, Gao HY, Chen KL (2009) Colloids Surf A: Physicochem Eng Aspects 342:127–131

    Article  CAS  Google Scholar 

  18. Tan JL, Ma DP, Feng SY, Zhang CQ (2013) Colloids Surf A: Physicochem Eng Aspects 417:146–153

    Article  CAS  Google Scholar 

  19. Snow SA, Fenton WN, Owen MJ (1991) Langmuir 7:7868–7871

    Article  Google Scholar 

  20. Tan JL, Zhao PJ, Ma DP, Feng SY, Zhang CQ (2013) Colloid Polym Sci 291:1487–1494

    Article  CAS  Google Scholar 

  21. Ding YS, Zha M, Zhang J, Wang SS (2007) Chin Chem Lett 18:48

    Article  CAS  Google Scholar 

  22. Cai YQ, Yu GQ, Liu CD (2012) Chin Chem Lett 23:1

    Article  Google Scholar 

  23. Antonietti M, Kuang DB, Smarsly B (2004) Chem Int Ed 43:4988

    Article  CAS  Google Scholar 

  24. Fry AJ (2003) Electroanal. J Chem 546:35

    CAS  Google Scholar 

  25. Xia HO, Yu J, Jiang YY, Mahmood I, Liu HZ (2007) Ind Eng Chem Res 46:2112

    Article  CAS  Google Scholar 

  26. Ao MQ, Xu GY, Zhu YY, Bai YJ (2008) Colloid Interface Sci 326:490–495

    Article  CAS  Google Scholar 

  27. Liu GY, Gu DM, Liu HY, Ding W, Li Z (2011) J Colloid Interface Sci 358:521

    Article  CAS  Google Scholar 

  28. Ao MQ, Huang PP, Xu GY, Yang XD, Wang YJ (2009) Colloid Polym Sci 287:395–402

    Article  CAS  Google Scholar 

  29. Ding YS, Zha M, Zhang J, Wang SS (2007) Colloids Surf A: Physicochem Eng Aspects 298:201

    Article  CAS  Google Scholar 

  30. Cai B, Dong JF, Cheng L, Jiang Z, Yang Y, Li XF (2013) Soft Matter 9:7639

    Google Scholar 

  31. Schmaucks G, Sonnek G, Wustneck M, Ramm M (1992) Langmuir 8:1724–1730

    Article  CAS  Google Scholar 

  32. Kamboj R, Singh S, Chauhan V (2014) Colloids Surf A: Physicochem Eng Aspects 441:233–241

    Article  CAS  Google Scholar 

  33. Ren CC, Wang F, Zhang ZQ, Nie HH, Li N, Cui M (2015) Colloids Surf A: Physicochem Eng Aspects 467:4

    Article  Google Scholar 

  34. Zana R (2002) Adv Colloid Interface Sci 97:205–253

    Article  CAS  Google Scholar 

  35. Shanks CP, Franses IE (1992) J Phys Chem 96:1794–1805

    Article  CAS  Google Scholar 

  36. Aguiar J, Molina-Bolívar JA, Peula-García JM, Ruiz CC (2002) J Colloid Interface Sci 255:382–390

    Article  CAS  Google Scholar 

  37. Ruiz CC, Díaz-López L, Aguiar J (2007) J Colloid Interface Sci 305:293–300

    Article  Google Scholar 

  38. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) J Colloid Interface Sci 336:111–116

    Article  Google Scholar 

  39. Inoue T, Ebina H, Dong B, Zheng LQ (2007) J Colloid Interface Sci 314:236

    Article  CAS  Google Scholar 

  40. Bhattacharya S, Haldar J (2004) Langmuir 20:7940–7947

    Article  CAS  Google Scholar 

  41. Tsao HK (1998) J Phys Chem B 102:10243–10247

    Article  CAS  Google Scholar 

  42. Shimizu S, Pires PAR, El Seoud OA (2004) Langmuir 20:9551–9559

    Article  CAS  Google Scholar 

  43. Shi LJ, Li N, Yan H, Gao YA, Zheng LQ (2011) Langmuir 27:1618

    Article  CAS  Google Scholar 

  44. Olutas EB, Aamis MJ (2012) Chem Thermodyn 47:144–153

    Article  Google Scholar 

  45. Zhang SH, Yan H, Zhao MW, Zheng LQ (2012) J Colloid Interface Sci 372:52–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the teachers and classmates who offered help for the whole experimental process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Zhao or Zhiwen Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liang, W., An, D. et al. Synthesis and properties of tetrasiloxane Gemini imidazolium surfactants. Colloid Polym Sci 294, 491–500 (2016). https://doi.org/10.1007/s00396-015-3805-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3805-3

Keywords

Navigation