Skip to main content

Advertisement

Log in

Solubility of Nifedipine and Lacidipine in Supercritical CO2: Measurement and Correlation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubilities of two calcium channel blockers, nifedipine and lacidipine, were measured in supercritical carbon dioxide at T = (313, 323, and 333) K over the pressure range (12.0–36.0) MPa using a dynamic-analytical apparatus. The solubility values obtained are in the range of (0.18–7.05) × 10−5 mol·mol−1. The solubilities of the two solids show similar trends with a crossover region of the respective isotherms in the range 18.0–21.0 MPa. The experimental solubility data were correlated with several different models. The semi-empirical density-based models provided satisfactory correlation results with AARD values lower than 10%. According to the results of the Méndez-Santiago and Teja models, the measured solid solubility data are quite consistent at all experimental conditions, which indicates the reliability of the data. The compressed gas model of the Peng–Robinson equation of state, combined with the two parameter van der Waals mixing rule (PR-EoS-VDW2) model, gives better correlation results than the PR-EoS-VDW1 model. The expanded liquid model based on Scatchard–Hildebrand regular solution theory can be used for solubility prediction, but the correlation results for nifedipine and lacidipine by the model are inferior to the compressed gas models in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T :

Temperature (in K), Eq. 2

s :

Solubility of the solute (in kg·m−3), Eq. 2

p :

Pressure (in MPa), Eq. 3

p ref :

Reference pressure p ref = 0.1 MPa, Eq. 3

y 2 :

Mole fraction of the solute in supercritical solution (in mol·mol−1), Eq. 5

p sat2 :

The saturation pressure of the solute at the given temperature (in MPa), Eq. 5

\( v_{2}^{\text{s}} \) :

Molar volume of the solid solute (in cm3·mol−1), Eq. 5

R :

Gas constant R = 8.3145 J·mol−1·K−1, Eq. 5

a m :

Attraction parameter of the supercritical solution (in MPa·m3·mol−1), Eq. 6

b m :

Repulsion parameter of the supercritical solution (in cm3·mol−1), Eq. 7

a :

Attraction parameter (in MPa·m3·mol−1), Eq. 10

b :

Repulsion parameter (in cm3·mol−1), Eq. 10

v :

Molar volume of the supercritical phase (in cm3·mol−1), Eq. 10

\( f_{2}^{\text{s}} \) :

Solid solute fugacity (in MPa), Eq. 12

\( f_{2}^{\text{l}} \) :

Liquid solute fugacity (in MPa), Eq. 12

\( \Delta c_{\text{p}} \) :

Difference between the heat capacities of the liquid the solid solute (in J·mol−1), Eq. 12

\( \Delta H_{\text{m}} \) :

Enthalpy of fusion of solute (in J·mol−1), Eq. 13

T m :

Melting temperature of solute (in K), Eq. 13

\( v_{2}^{l} \) :

Liquid molar volume of solute (in cm3·mol−1), Eq. 15

\( v_{1} \) :

Molar volume of the sc-CO2 (cm3·mol−1), Eq. 16

\( y_{2}^{ \exp } \) :

Experimental solubility of the solute in sc-CO2 (in mol·mol−1), Eq. 19

\( y_{2}^{\text{cal}} \) :

Calculated solubility of the solute in sc-CO2 (in mol·mol−1), Eq. 19

N :

Number of solubility values, Eq. 19

W :

Mass of drug loaded in the extractor (in g), Eq. 20

F :

Mass flow rate of CO2 (in g·s−1), Eq. 20

ρ :

Density of sc-CO2 (in kg·m−3), Eq. 2

ρ ref :

Reference density ρ ref = 700 kg·m−3, Eq. 3

\( \varphi_{2}^{\text{sat}} \) :

Fugacity coefficient of the pure solute at the saturation pressure, Eq. 5

\( \varphi_{2} \) :

Fugacity coefficient of the solute in the supercritical phase under the experimental conditions (p, T), Eq. 5

γ 2 :

The solute activity coefficient in the supercritical phase under the experimental condition (p, T), Eq. 12

\( \delta_{1} \) :

Solubility parameter of sc-CO2 (in MPa0.5), Eq. 15

\( \delta_{2} \) :

Solubility parameter of the solute (in MPa0.5), Eq. 15

\( \phi_{1} \) :

Volume fraction of the solvent, Eq. 15

\( \tau \) :

Contact time (in s), Eq. 20

References

  1. Coelho, J.P., Naydenov, G.P., Yankov, D.S., Stateva, R.P.: Experimental measurements and correlation of the solubility of three primary amides in supercritical CO2: acetanilide, propanamide, and butanamide. J. Chem. Eng. Data 58, 2110–2115 (2013)

    Article  CAS  Google Scholar 

  2. Li, H.R., Jia, D.D., Zhu, Q.Q., Shen, B.Q.: Determination, correlation and prediction of the solubilities of niflumic acid, clofenamic acid and tolfenamic acid in supercritical CO2. Fluid Phase Equilib. 392, 95–103 (2015)

    Article  CAS  Google Scholar 

  3. Skerget, M., Knez, Z., Hrncic, M.K.: Solubility of solids in sub and supercritical fluids: A review. J. Chem. Eng. Data 56, 694–719 (2011)

    Article  CAS  Google Scholar 

  4. Weinstein, R.D., Hanlon, W.H., Donohue, J.P., Simeone, M., Rozich, A., Muske, K.R.: Solubility of felodipine and nitrendipine in liquid and supercritical carbon dioxide by cloud point and UV spectroscopy. J. Chem. Eng. Data 52, 256–260 (2007)

    Article  CAS  Google Scholar 

  5. Tomasko, D.L., Li, H., Liu, D., Han, X., Wingert, M.J., Lee, L.J., Koelling, K.W.: A review of CO2 applications in the processing of polymers. Ind. Eng. Chem. Res. 42, 6431–6456 (2003)

    Article  CAS  Google Scholar 

  6. Yeo, S.D., Kiran, E.: Formation of polymer particles with supercritical fluids: A review. J. Supercrit. Fluids 34, 287–308 (2005)

    Article  CAS  Google Scholar 

  7. Nalawade, S.P., Picchioni, F., Janssen, L.P.B.M.: Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci. 31, 19–43 (2006)

    Article  CAS  Google Scholar 

  8. Marrero, J., Gani, R.: Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 183–184, 183–208 (2001)

    Article  Google Scholar 

  9. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  10. Immirzi, A., Perini, B.: Prediction of density in organic crystals. Acta Crystallogr. A 33, 216–218 (1977)

    Article  Google Scholar 

  11. Fedors, R.F.: A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)

    Article  CAS  Google Scholar 

  12. Knez, Z., Skerget, M., Sencar-Bozic, P., Rizner, A.J.: Solubility of nifedipine and nitrendipine in supercritical CO2. J. Chem. Eng. Data 40, 216–220 (1995)

    Article  CAS  Google Scholar 

  13. Deiters, U.K.: In: Brunner, G. (ed.) Supercritical Fluids as Solvents and Reaction Media, pp. 185–209. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  14. Chrastil, J.: Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86, 3016–3021 (1982)

    Article  CAS  Google Scholar 

  15. Bartle, K.D., Clifford, A.A., Jafar, S.A., Shilstone, G.F.: Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. J. Phys. Chem. Ref. Data 20, 713–756 (1991)

    Article  CAS  Google Scholar 

  16. Méndez-Santiago, J., Teja, A.S.: The solubility of solids in supercritical fluids. Fluid Phase Equilib. 158, 501–510 (1999)

    Article  Google Scholar 

  17. Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E.: Molecular Thermodynamics of Fluid Phase Equilibria, 2nd edn. Prentice Hall. Inc, Engelwood Cliffs, NJ (1986)

    Google Scholar 

  18. Neau, E., Garnier, S., Avaullee, L.: A consistent estimation of sublimation pressures using a cubic equation of state and fusion properties. Fluid Phase Equilib. 164, 173–186 (1999)

    Article  CAS  Google Scholar 

  19. Li, H., Li, S., Shen, B.: Correlation and prediction of the solubilities of solid n-alkanes in supercritical carbon dioxide using the Carnahan–Starling–van der Waals model with a density-dependent parameter. Fluid Phase Equilib. 325, 28–34 (2012)

    Article  CAS  Google Scholar 

  20. Johnston, K.P., Eckert, C.A.: An analytical Carnahan–Staring van der Waals model hydrocarbon solids in supercritical fluids. AIChE J. 27, 773–779 (1981)

    Article  CAS  Google Scholar 

  21. Huang, F., Li, M., Lee, L.L., Starling, K.E., Chung, F.T.H.: An accurate equation of state for carbon dioxide. J. Chem. Eng. Jpn. 18, 490–496 (1985)

    Article  CAS  Google Scholar 

  22. Weinstein, R.D., Grotzinger, L.L., Salemo, P., Omiatek, D.M., Bessel, C.A.: Solubility of several short-chain lithium dialkyldithiocarbamates in liquid and supercritical carbon dioxide. J. Chem. Eng. Data 50, 2088–2093 (2005)

    Article  CAS  Google Scholar 

  23. Medina, I., Bueno, J.L.: Solubilities of 2-nitroanisole and 3-phenyl-1-propanol in supercritical carbon dioxide. J. Chem. Eng. Data 45, 298–300 (2000)

    Article  CAS  Google Scholar 

  24. Foster, N.R., Gurdial, G.S., Yu, J.S.L., Liong, K.K., Tilly, K.D., Ting, S.S.T., Lee, J.H.: Significance of the crossover pressure in solid–supercritical fluid phase equilibria. Ind. Eng. Chem. Res. 30, 1955–1964 (1991)

    Article  CAS  Google Scholar 

  25. Li, H., Jia, D., Liu, R., Shen, B.: Correlating and estimating the solubilities of solid organic compounds in supercritical CO2 based on the modified expanded liquid model and the group contribution method. Fluid Phase Equilib. 385, 10–24 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21106107, 21206077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Meng, T., Jia, D. et al. Solubility of Nifedipine and Lacidipine in Supercritical CO2: Measurement and Correlation. J Solution Chem 46, 70–88 (2017). https://doi.org/10.1007/s10953-016-0550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0550-2

Keywords

Navigation