Skip to main content
Log in

Complex Formation Equilibria and Molecular Structure of Divalent Metal Ions–Vitamin B3–Glycine Oligopeptides Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Complex formation of divalent transition metal ions (copper(II), cobalt(II) and nickel(II)), vitamin B3 (nicotinic acid) and glycine oligopeptides (glycine, glycylglycine, glycyl-l-phenylalanine, and glycylglycylglycine) were studied at 298 K in aqueous solutions using the pH-potentiometric technique. The copper Cu(II), cobalt Co(II), and nickel Ni(II) complexing capacity of vitamin B3 in the absence and in the presence of glycine peptides and their overall stability constants in aqueous solutions were obtained and explained by the HYPERQUAD 2008 program using the potentiometric data. From the protonation and complex formation constants, representative complex species distribution diagrams were obtained using HYSS 2009 software. The UV–Vis spectroscopic, cyclic voltammeteric and conductometric titration measurements were carried out to give qualitative information about the conformation of the complexes formed in these solutions and their stoichiometric ratios. The Gibbs energies and the molecular structures of the complexes were evaluated and predicted using Gaussian 09 software molecular modeling and density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Jacobson, E.L., Kim, H., Kim, M., Jacobson, M.K.: Niacin: vitamin and antidyslipidemic drug. Subcell. Biochem. 56, 37–47 (2012)

    CAS  Google Scholar 

  2. Carlson, L.A.: Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 258, 94–114 (2005)

    Article  CAS  Google Scholar 

  3. Gonçalves, E.M., Bernardes, C.E.S., Diogo, H.P., Minas da Piedade, M.E.: Energetics and structure of nicotinic acid (niacin). J. Phys. Chem. B 114, 5475–5485 (2010)

    Article  Google Scholar 

  4. Offermanns, S.: The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic agent. Trends Pharmacol. Sci. 27, 384–390 (2006)

    Article  CAS  Google Scholar 

  5. Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I., Schwabe, U.: Characterization of a G-protein coupled receptor for nicotinic acid. Mol. Pharmacol. 59, 349–357 (2001)

    CAS  Google Scholar 

  6. Villines, T.C., Kim, A.S., Gore, R.S., Taylor, A.J.: Niacin: the evidence, clinical use, and future directions. Curr. Atheroscler. Rep. 14, 49–59 (2012)

    Article  CAS  Google Scholar 

  7. Wise, A., Foord, S.M., Fraser, N.J., Barnes, A.A., Elshourbagy, N., Eilert, M., Ignar, D.M., Murdock, P.R., Steplewski, K., Green, A., Brown, A.J., Dowell, S.J., Szekeres, P.G., Hassall, D.G., Marshall, F.H., Wilson, S., Pike, N.B.: Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003)

    Article  CAS  Google Scholar 

  8. Paolini, J.F., Mitchel, Y.B., Reyes, R., Kher, U., Lai, E., Watson, D.J., Norquist, J.M., Meehan, A.G., Bays, H.E., Davidson, M., Ballantyne, C.M.: Effects of laropiprant on nicotinic acid induced flushing in patients with dyslipidemia. Am. J. Cardiol. 101, 625–630 (2008)

    Article  CAS  Google Scholar 

  9. Sakai, T., Kamanna, V.S., Kashyap, M.L.: Niacin, but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol. Arterioscler. Thromb. Vasc. Biol. 21, 1783–1789 (2001)

    Article  CAS  Google Scholar 

  10. Brown, B.G., Zhao, X.Q., Chait, A., Fisher, L.D., Cheung, M.C., Morse, J.S., Dowdy, A.A., Marino, E.K., Bolson, E.L., Alaupovic, P., Frohlich, J., Albers, J.J.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. New. Engl. J. Med. 345, 1583–1592 (2001)

    Article  CAS  Google Scholar 

  11. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic acid. J. Chem. Eng. Data 56, 532–540 (2011)

    Article  CAS  Google Scholar 

  12. Fazary, A.E., Hernowo, E., Angkawijaya, A.E., Chou, T.-C., Lin, C.H., Taha, M., Ju, Y.-H.: Complex formation between ferric(III), chromium(III) and cupric(II) metal ions and (O, O) donor ligands with biological relevance in aqueous solution. J. Solution Chem. 40, 1965–1986 (2011)

    Article  CAS  Google Scholar 

  13. Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.H.: Complex stability and molecular structure studies of divalent metal ion with l-norleucine and vitamin B3. J. Chem. Eng. Data 56, 4549–4555 (2011)

    Article  CAS  Google Scholar 

  14. Fazary, A.E., Taha, M., Ju, Y.H.: Iron complexation studies of gallic acid. J. Chem. Eng. Data 54, 35–42 (2009)

    Article  CAS  Google Scholar 

  15. Angkawijaya, A.E., Fazary, A.E., Ju, Y.H.: Cu(II), Co(II), and Ni(II)-antioxidative phenolates- glycine peptides systems: an insight into its equilibrium solution study. J. Chem. Eng. Data 57, 3443–3451 (2012)

    Article  CAS  Google Scholar 

  16. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Ismadji, S., Ju, Y.H.: Nickel and cobalt complexes of non-protein l-norvaline, and antioxidant ferulic acid: potentiometric and spectrophotometric studies. J. Solution Chem. 7, 1156–1164 (2012)

    Article  Google Scholar 

  17. Metrohm, AG.: Instructions for use for 6.6012.X40 Software TiNet 2.4 CH-9101 Herisau (Switzerland), pp. 1–148

  18. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution, determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  19. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 edn. Gaussian Inc., Wallingford (2009)

  21. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  22. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1998)

    Article  Google Scholar 

  23. Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  24. Ramos, J.M., Versiane, O.J.F., Soto, C.A.T.: Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta Part A 68, 1370–1378 (2007)

    Article  Google Scholar 

  25. Ramos, J.M., Versiane, O., Felcman, J., Soto, C.A.T.: FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate–guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta Part A 72, 182–189 (2009)

    Article  Google Scholar 

  26. Chachkov, D.V., Mikhailov, O.V.: DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion–dithiooxamide–formaldehyde. Russ. J. Inorg. Chem. 54, 1952–1956 (2009)

    Article  Google Scholar 

  27. Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S.: Ab initio molecular orbital study of the complexing behavior of N-ethyl-1naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A 146, 163–168 (2002)

    Article  CAS  Google Scholar 

  28. Gergely, A., Sovago, I., Nagypal, I., Kiraly, R.: Equilibrium relations of alpha-aminoacid mixed complexes of transition metal ions. Inorg. Chim. Acta 6, 435–439 (1972)

    Article  CAS  Google Scholar 

  29. Yamauchi, O., Hirano, Y., Nakao, Y., Nakahara, A.: Stability of fused rings in metal chelates. VI. Structures and stability constants of the copper(II) chelates of dipeptides containing glycine and/or β-alanine. Can. J. Chem. 47, 3441–3445 (1969)

    Article  CAS  Google Scholar 

  30. Yamauchi, O., Nakao, Y., Nakahara, A.: Stability of fused rings in metal chelates. X. Structures and stability constants of the copper(II) complexes of tripeptides composed of glycine and/or β-alanine. Bull. Chem. Soc. Japan 46, 2119–2124 (1973)

    Article  CAS  Google Scholar 

  31. Irving, H., Williams, R.J.P.: The stability of transition-metal complexes. J. Chem. Soc. 75, 3192–3210 (1953)

    Article  Google Scholar 

  32. Pagenkopf, G.K., Margerum, D.W.: Proton-transfer reaction with copper(II)–triglycine (CuH-2L-). J. Am. Chem. Soc. 90, 501–502 (1968)

    Article  CAS  Google Scholar 

  33. Basolo, F., Chen, Y.T., Murmann, R.K.: Sterric effects and the stability of complex compounds. IV. The chelating tendencies of C-substituted ethylenediamines with copper(II) and nickel(II) ions. J. Am. Chem. Soc. 76, 956–959 (1954)

    Article  CAS  Google Scholar 

  34. Lenarcik, B., Kierzkowska, A.: The influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4(5)-methylimidazoles. Sep. Sci. Technol. 39, 3485–3508 (2004)

    Article  CAS  Google Scholar 

  35. Sigel, H., Prijs, B., Martin, R.B.: Stability of binary and ternary β-alanine containing dipeptide copper(II) complexes. Inorg. Chim. Acta 56, 45–49 (1981)

    Article  CAS  Google Scholar 

  36. Turkel, N., Sahin, C.: Stability of binary and ternary copper(II) complexes with 1,10-phenanthroline, 2,2′-bipyridyl and some α-amino acids in aqueous medium. Chem. Pharm. Bull. 57, 694–699 (2009)

    Article  CAS  Google Scholar 

  37. Khade, B.C., Deore, P.M., Arbad, B.R.: Mixed-ligand complex formation of copper(II) with some aminoacids and drug dapsone. Int. J. ChemTech Res. 2, 1036–1041 (2010)

    CAS  Google Scholar 

  38. Sharifi, S., Nori-shargha, D., Bahadory, A.: Complexes of thallium(I) and cadmium(II) with dipeptides of l-phenylalanylglycine and glycyl-l-phenylalanine. J. Braz. Chem. Soc. 18, 1011–1016 (2007)

    Article  CAS  Google Scholar 

  39. Casale, A., Robertis, A.D., Stefano, C.D., Gianguzza, A., Patane, G., Rigano, C., Sannartano, S.: Thermodynamic parameters for the formation of glycine complexes with magnesium(II), calcium(II), lead(II), manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) at differenr temperatures and ionic strengths, with particular reference to natural fluid conditions. Thermochim. Acta 255, 109–141 (1995)

    Article  CAS  Google Scholar 

  40. Erdemgil, F.Z., Sanli, S., Sanli, N., Ozkan, G., Barbosa, J., Guiteras, J., Beltran, J.L.: Determination of pKa values of some hydroxylated benzoic acids in methanol–water binary mixtures by LC methodology and potentiometry. Talanta 72, 489–496 (2007)

    Article  CAS  Google Scholar 

  41. Wu, C.D., Lu, C.Z., Zhuang, H.H., Huang, J.S.: Structure and magnetic property of a new 3D nicotinic acid bridged nickel polymer. Z. Anorg. Allg. Chem. 629, 693–696 (2003)

    Article  CAS  Google Scholar 

  42. Ahuja, I.S., Singh, R., Rai, C.P.: Complexes of copper(II) with nicotinic acid and some related ligands. Transit. Met. Chem. 2, 257–260 (1977)

    Article  CAS  Google Scholar 

  43. Cooper, J.A., Anderson, B.F., Buckley, P.D., Blackwell, L.F.: Structure and biological activity of nitrogen and oxygen coordinated nicotinic acid complexes of chromium. Inorg. Chim. Acta 91, 1–9 (1984)

    Article  CAS  Google Scholar 

  44. Abu-Youssef, M.A.M.: Two new 3D network structures: [Cd3(nic)4(N3)2(H2O)] n and [Zn(nic)(N3)]n (nic = nicotinate anion). Polyhedron 24, 1829–1836 (2005)

    Article  CAS  Google Scholar 

  45. Pearson, R.J.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by King Abdulaziz City for Science and Technology (KACST) through the Project P–S-12-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Fazary.

Appendices

Appendix 1

See Fig. 23.

Fig. 23
figure 23

Potentiometric titration and speciation diagram of glycine for protonation constants determination at T = 298.15 K and I = 0.15 mol·dm−3 NaNO3

Appendix 2

See Figs. 24, 25, 26, 27.

Fig. 24
figure 24

Conductometric titration curves for a Co(II)–NA, b Co(II)–G, c Co(II)–GG, d Co(II)–GP and e Co(II)–GGG binary systems at I = 0.16 mol·dm−3 NaNO3, T = 298.15 ± 0.1 K, [Co(II)] = [NA] = [G] = [GG] = [GP] = [GGG] = 1 × 10−3 mol·dm−3

Fig. 25
figure 25

Conductometric titration curves for a Co(II)–NA–G, b Co(II)–NA–GG, c Co(II)–NA–GG, d Co(II)–NA–GP and e Co(II)–NA–GGG ternary systems at I = 0.16 mol·dm−3 NaNO3, T = 298.15 ± 0.1 K, [Co(II)] = [NA] = [G] = [GG] = [GP] = [GGG] = 1 × 10−3 mol·dm−3

Fig. 26
figure 26

Conductometric titration curves for a Ni(II)–NA, b Ni(II)–G, c Ni(II)–GG, d Ni(II)–GP and e Ni(II)–GGG binary systems at I = 0.16 mol·dm−3 NaNO3, T = 298.15 ± 0.1 K, [Ni(II)] = [NA] = [G] = [GG] = [GP] = [GGG] = 1 × 10−3 mol·dm−3

Fig. 27
figure 27

Conductometric titration curves for a Ni(II)–NA–G, b Ni(II)–NA–GG, c Ni(II)–NA–GG, d Ni(II)–NA–GP and e Ni(II)–NA–GGG ternary systems at I = 0.16 mol·dm−3 NaNO3, T = 298.15 ± 0.1 K, [Ni(II)] = [NA] = [G] = [GG] = [GP] = [GGG] = 1 × 10−3 mol·dm−3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajhi, A.Y., Ju, YH., Angkawijaya, A.E. et al. Complex Formation Equilibria and Molecular Structure of Divalent Metal Ions–Vitamin B3–Glycine Oligopeptides Systems. J Solution Chem 42, 2409–2442 (2013). https://doi.org/10.1007/s10953-013-0116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0116-5

Keywords

Navigation