Skip to main content
Log in

Synthesis, Characterization and Stability of Gold Nanoparticles (AuNPs) in Different Buffer Systems

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Abstract

In the present study, colloidal gold nanoparticles (AuNPs) were synthesized by the citrate reduction method. The physical properties and their stability were studied in the various buffer systems at different pH and time intervals. Monodisperse AuNPs were used to assess their stability and aggregation in 0.1 M of buffers. We analyzed the stability of the colloidal gold nanoparticles in borate, phosphate, Tris–citrate and Tris–HCl buffers with variable pH and time-dependent manner. For understanding the stability and aggregation of AuNPs in different buffers, AuNPs and buffer mixture was incubated at 4 °C for different time-periods. The surface plasmon resonance (SPR) spectra and colorimetric changes were recorded at time interval. Absorbance spectra revealed that different ratios of AuNPs in borate buffer were stable at pH 7.5 to 9.3. Wine red colour with maximum absorbance at 520 nm was obtained due to lack of the aggregation. The phosphate buffer was not suitable for monodisperse gold nanoparticles and got aggregated. In Tris–citrate buffer, the absorbance A520 (*P < 0. 05 and ***P < 0. 001) and correlation coefficient changed with incubation time and λmax shifts to longer wavelengths at pH 8.5. Tris–HCl buffer revealed significant changes A520 with incubation period and did not correlate with time. There were changes in A520 with incubation time and λmax shifts towards longer wavelength at pH 4.0 while AuNPs was stable at pH 10.5. The phosphate buffer, Tris–citrate buffer and Tris–HCl buffer made complexes and got aggregated colorimetric response was shifted wine red color to blue –black color.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AuNPs:

Gold nanoparticles

TEM:

Transmission electron microscopy

SPR:

Surface plasmon resonance

HMD:

Heavy metal ions detection

SES:

Surface enhanced spectroscopy

DLS:

Dynamic light scattering

UV–Vis:

Ultraviolet–Visible spectroscopy

EM:

Electromagnetic radiation

SPR:

Surface plasmon resonance

MES:

4-Morpholine ethane sulphonic, acid hemi sodium salt

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

DDL:

Diffuse double layer

DLVO:

Derjaguin–Landau–Verwey–Overbeek

PEG-SH:

Poly(ethylene glycol) methyl ether thiol

References

  1. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello (2012). Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779.

    Article  CAS  Google Scholar 

  2. H. Tyagi, A. Kushwaha, A. Kumar, and M. Aslam (2016). A facile pH controlled citrate-based reduction method for gold nanoparticle synthesis at room temperature. Nanoscale Res. Lett. 11(1), 362.

    Article  Google Scholar 

  3. R. McCaffrey, H. Long, Y. Jin, A. Sanders, W. Park, and W. Zhang (2014). Template synthesis of gold nanoparticles with an organic molecular cage. J. Am. Chem. Soc. 136(5), 1782–1785.

    Article  CAS  Google Scholar 

  4. N. Li, P. Zhao, and D. Astruc (2014). Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53(7), 1756–1789.

    Article  CAS  Google Scholar 

  5. X. Liu, H. Xu, H. Xia, and D. Wang (2012). Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir 28(38), 13720–13726.

    Article  CAS  Google Scholar 

  6. R. Campardelli, G. Della Porta, L. Gomez, S. Irusta, E. Reverchon, and J. Santamaria (2014). Au–PLA nanocomposites for photothermally controlled drug delivery. J. Mater. Chem. B 2(4), 409–417.

    Article  CAS  Google Scholar 

  7. J. Lee, S. R. Ahmed, S. Oh, J. Kim, T. Suzuki, K. Parmar, S. S. Park, J. Lee, and E. Y. Park (2015). A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens. Bioelectron. 64, 311–317.

    Article  CAS  Google Scholar 

  8. C. Schleh, M. Semmler-Behnke, J. Lipka, A. Wenk, S. Hirn, M. Schäffler, G. Schmid, U. Simon, and W. G. Kreyling (2012). Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6(1), 36–46.

    Article  CAS  Google Scholar 

  9. A. M. Alkilany and C. J. Murphy (2010). Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12(7), 2313–2333.

    Article  CAS  Google Scholar 

  10. A. Habib, M. Tabata, and Y. G. Wu (2005). Formation of gold nanoparticles by good’s buffers. Bull. Chem. Soc. Jpn. 78(2), 262–269.

    Article  CAS  Google Scholar 

  11. T. L. Moore, L. Rodriguez-Lorenzo, V. Hirsch, S. Balog, D. Urban, C. Jud, B. Rothen-Rutishauser, M. Lattuada, and A. Petri-Fink (2015). Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44(17), 6287–6305.

    Article  CAS  Google Scholar 

  12. S. A. Edwards and D. R. Williams (2004). Double layers and interparticle forces in colloid science and biology: analytic results for the effect of ionic dispersion forces. Phys. Rev. Lett. 92(24), 248303.

    Article  CAS  Google Scholar 

  13. M. Boström, D. R. M. Williams, and B. W. Ninham (2001). Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87(16), 168103.

    Article  Google Scholar 

  14. M. A. Butkus and D. Grasso (1998). Impact of aqueous electrolytes on interfacial energy. J. Colloid Interface Sci. 200(1), 172–181.

    Article  CAS  Google Scholar 

  15. J. Turkevich, P. C. Stevenson, and J. Hillier (1953). The formation of colloidal gold. J. Phys. Chem. 57(7), 670–673.

    Article  CAS  Google Scholar 

  16. J. Liu and Y. Lu (2006). Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 1(1), 246.

    Article  CAS  Google Scholar 

  17. M. Kalita, S. Balivada, V. P. Swarup, C. Mencio, K. Raman, U. R. Desai, D. Troyer, and B. Kuberan (2014). A nanosensor for ultrasensitive detection of oversulfated chondroitin sulfate contaminant in heparin. J. Am. Chem. Soc. 136(2), 554–557.

    Article  CAS  Google Scholar 

  18. J. L. Yao, G. P. Pan, K. H. Xue, D. Y. Wu, B. Ren, D. M. Sun, J. Tang, X. Xu, and Z. Q. Tian (2000). A complementary study of surface-enhanced Raman scattering and metal nanorod arrays. Pure Appl. Chem. 72(1–2), 221–228.

    Article  CAS  Google Scholar 

  19. F. Y. Alzoubi, J. Y. Alzouby, M. K. Alqadi, H. A. Alshboul, and K. M. Aljarrah (2015). Synthesis and characterization of colloidal gold nanoparticles controlled by the pH and ionic strength. Chin. J. Phys. 53(5), 100801-1.

    Google Scholar 

  20. P. J. De Temmerman, E. Van Doren, E. Verleysen, Y. Van der Stede, M. A. D. Francisco, and J. Mast (2012). Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J. Nanobiotechnol. 10(1), 24.

    Article  Google Scholar 

  21. H. Schiffter and G. Lee (2007). Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories. J. Pharm. Sci. 96(9), 2274–2283.

    Article  CAS  Google Scholar 

  22. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng (2007). Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948.

    Article  CAS  Google Scholar 

  23. C. Li, D. Li, G. Wan, J. Xu, and W. Hou (2011). Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res. Lett. 6(1), 440.

    Article  Google Scholar 

  24. J. Huang, W. Liu, D. S. Dolzhnikov, L. Protesescu, M. V. Kovalenko, B. Koo, S. Chattopadhyay, E. V. Shenchenko, and D. V. Talapin (2014). Surface functionalization of semiconductor and oxide nanocrystals with small inorganic oxoanions (PO43–, MoO42–) and polyoxometalate ligands. ACS Nano 8(9), 9388–9402.

    Article  CAS  Google Scholar 

  25. K. Rahme, M. T. Nolan, T. Doody, G. P. McGlacken, M. A. Morris, C. O’Driscoll, and J. D. Holmes (2013). Highly stable PEGylated gold nanoparticles in water: applications in biology and catalysis. RSC Adv. 3(43), 21016–21024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director, ICAR-National Dairy Research Institute, Karnal-132001(Haryana). India and gratefully acknowledged. The authors thank for providing the facilities for the research.

Author information

Authors and Affiliations

Authors

Contributions

SS conducted all experiments and prepared the draft of manuscript. RS supervised the work and revised the manuscript, provided general guidance and advice. All authors contributed to discussing and commenting on the manuscript.

Corresponding author

Correspondence to Sonia Sangwan.

Ethics declarations

Conflict of interest

The authors declare no any conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, S., Seth, R. Synthesis, Characterization and Stability of Gold Nanoparticles (AuNPs) in Different Buffer Systems. J Clust Sci 33, 749–764 (2022). https://doi.org/10.1007/s10876-020-01956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01956-8

Keywords

Navigation