Skip to main content
Log in

Oxidation of d-Glucose by Silver(III) Periodate Complex in the Presence of Ru(III)/Os(VIII) as a Homogeneous Catalyst: A Comparative Mechanistic Study (Stopped Flow Technique)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the oxidation of ruthenium(III) (Ru(III)) and osmium(VIII) (Os(VIII)) catalyzed oxidation of d-glucose (d-Glu) by silver(III) periodate complex (DPA) in aqueous alkaline medium at 298 K and constant ionic strength 0.003 mol·dm−3 was studied spectrophotometrically. The reaction between d-Glu and DPA in alkaline medium exhibits 1:2 stoichiometry in both catalyzed reactions (d-Glu:DPA). The main products were identified as D-arabinonic acid and formic acid by spot tests, GC–MS spectra and chromatographic techniques. The reaction orders with respect to various species concentrations were determined. Also, the active species of catalyst and oxidant have been identified. Probable mechanisms were proposed. The activation parameters with respect to the slow step of the mechanism were computed and discussed and thermodynamic quantities were also calculated. It has been observed that the catalytic efficiency for the present reaction is in the order Os(VIII) > Ru(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Venkatakrishna, K., Rao, J.P.: Kinetics and mechanism of oxidation of pyrimidine nucleobases by diperiodatoargentate(III) in aqueous alkaline medium. Transition Met. Chem. 20, 344–346 (1995)

    Article  Google Scholar 

  2. Sethuram, B.: Some Aspects of Electron Transfer Reactions Involving Organic Molecules, p. 151. Allied Publishers (P) Ltd, New Delhi (2003)

  3. Jaiswal, P.K., Yadava, K.L.: Silver(III) as an oxidative titrant: Determination of some sugars, carboxylic acids and inorganic ions. Talanta 17, 236–238 (1970)

    Article  CAS  Google Scholar 

  4. Jaiswal, P.K.: Ditelluratoargentate(III) and ditelluratocuprate(III) as reagent in microanalysis of cellobiose, melibiose, mixture of some aliphatic acids, and formaldehyde and formic acid. Analyst 1, 503–506 (1972)

    CAS  Google Scholar 

  5. Jayaprakash Rao, P., Sethuram, B., Navaneeth Rao, T.: Kinetics of oxidative deamination of some amino acids by diperiodatoargentate(III) in alkaline medium. React. Kinet. Catal. Lett. 29, 288–296 (1985)

    Google Scholar 

  6. VenkataKrishna, K., Jayaprakash Rao, P.: Kinetics and mechanism of oxidation of pyrimidine nucleobases by diperiodatoargentate(III) in aqueous alkaline medium. Indian J. Chem. 37A, 1106–1109 (1998)

    Google Scholar 

  7. Kumar, A., Kumar, P., Ramamurthy, P.: Kinetics of oxidation of glycine and related substrates by diperiodatoargentate(III). Polyhedron 18, 773–780 (1999)

    Article  CAS  Google Scholar 

  8. Kumar, A., Kumar, P.: Kinetics and mechanism of oxidation of nitrilotriacetic acid by diperiodatoargentate(III). J. Phys. Org. Chem. 12, 79–82 (1999)

    Article  CAS  Google Scholar 

  9. Kumar, A., Vaishali, P., Ramamurthy, P.: Kinetics and mechanism of oxidation of ethylenediamine and related compounds by diperiodatoargentate(III). Int. J. Chem. Kinet. 32, 286–293 (2000)

    Article  CAS  Google Scholar 

  10. Das, A.K.: Kinetic and mechanistic aspects of metal ion catalysis in cerium(IV) oxidation. Coord. Chem. Rev. 213, 307–325 (2001)

    Article  CAS  Google Scholar 

  11. Agrawal, M.C., Upadhyay, S.K.J.: Osmium(VIII) as catalyst in some redox reactions. Sci. Ind. Res. 42, 508–510 (1983)

    CAS  Google Scholar 

  12. Hugar, G.H., Nandibewoor, S.T.: Kinetics of osmium(VIII) catalysis of periodate oxidation of DMF in aqueous alkaline medium. Transition Met. Chem. 19, 215–217 (1994)

    Article  CAS  Google Scholar 

  13. Veerasomaiah, P., Bal Reddy, K., Sethuram, B., Navaneeth Rao, T.: Role of osmium tetroxide in oxidation of 2-propanol in presence and absence of different one and two-equivalent oxidants in aqueous alkaline medium. Indian J. Chem. 26A, 402–406 (1987)

    Google Scholar 

  14. Khan, Z.: Kabir-ud-Din: kinetics and mechanism of oxidation d-glucose by chromium(VI) in perchloric acid. Indian J. Chem. 39A, 522–527 (2000)

    CAS  Google Scholar 

  15. Singh, A.K., Shalini, S., Srivastava, J., Srivastava, R., Singh, P.: Studies in kinetics and mechanism of oxidation of d-glucose and d-fructose by alkaline solution of potassium iodate in the presence of Ru(III) as homogeneous catalyst. J. Mol. Catal. A. Chem. 278, 72–81 (2007)

    Article  CAS  Google Scholar 

  16. Saxena, O.C.: New titrimetric microdetermination of osmium. Microchem. J. 12, 609–611 (1967)

    Article  CAS  Google Scholar 

  17. Reddy, C.S., Vijaya, K.T.: Kinetics and mechanism of uncatalyzed and ruthenium(III) catalyzed oxidation of allyl alcohol by N-bromosuccinimide in aqueous alkaline medium. Indian J. Chem. 34A, 615–622 (1995)

    CAS  Google Scholar 

  18. Kamble, D.L., Chougale, R.B., Nandibewoor, S.T.: Kinetics of oxidation of chromium(III) by N-bromosuccinimide in aqueous alkaline medium. Indian J. Chem. 35A, 865–869 (1996)

    CAS  Google Scholar 

  19. Panigrahi, G.P., Misro, P.K.: Kinetics and mechanism of oxidation of osmium(VIII) catalysed oxidation of unsaturated acids by sodium periodate. Indian J. Chem. 15A, 1066–1069 (1977)

    CAS  Google Scholar 

  20. Cohen, G.L., Atkinson, G.: The chemistry of argentic oxide. The formation of a silver(III) complex with periodate in basic solution. Inorg. Chem. 3, 1741–1743 (1964)

    Article  CAS  Google Scholar 

  21. Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C.: Vogel’s Textbook of Quantitative Chemical Analysis, 5th edn., pp. 467, 391. Longmans Singapore Publishers Pvt Ltd., Singapore (1996)

  22. Feigl, F.: Spot Tests in Organic Analysis, p. 368. Elsevier, New York (1960)

    Google Scholar 

  23. Gutbauer, F.: Chromatographic behaviour and chemical structure: I. Thin-layer chromatography of aliphatic acids. J. Chromatogr. 45, 104–112 (1969)

    Article  Google Scholar 

  24. Ragavendra, M.P., Mahadevappa, K.M., Rai, L., Rangappa, K.S.: Mechanistic investigations of oxidation of amino sugars by sodium N-chloro-p-toluenesulfonamide in alkaline medium. J. Carbohydr. Chem. 16, 343–358 (1997)

    Article  Google Scholar 

  25. Shetti, N.P., Hegde, R.N., Nandibewoor, S.T.: Structure reactivity and thermodynamic analysis on the oxidation of amphicillin drug by copper(III) complex in aqueous alkaline medium (stopped flow technique). J. Mol. Struct. 930, 180–186 (2009)

    Article  CAS  Google Scholar 

  26. Moelwyn-Hughes, E.A.: Kinetics of Reaction in Solutions, p. 297. Oxford University Press, London (1947)

    Google Scholar 

  27. Krishenbaum, L.J., Mrozowski, L.: Kinetics of silver(III) decomposition in diluted acid. Inorg. Chem. 17, 3718–3719 (1978)

    Article  Google Scholar 

  28. Banerjee, R., Das, K., Das, A., Dasgupta, S.: Kinetics of silver(I)-catalyzed oxidation of formic acid by the (ethylenebis(biguanidine)) silver(III) cation in acid perchlorate media. Inorg. Chem. 28, 585–588 (1989)

    Article  CAS  Google Scholar 

  29. Banerjee, R., Das, R., Mukhopadhyay, S.: Kinetics of the silver(I)-catalysed oxidation of H3PO2 with [ethylenebis(biguanide)]silver(III) cation in aqueous perchloric acid solution. J. Chem. Soc. Dalton Trans., 1317–1321 (1992). doi:10.1039/DT9920001317

  30. Crouthamel, C.E., Hayes, A.M., Martin, D.S.: Ionization and hydration equilibria of periodic acid. J. Am. Chem. Soc. 73, 82–87 (1951)

    Article  CAS  Google Scholar 

  31. Bailar, J.C., Emeleus, H.J., Nyholm, S.R., Trotman-Dikenson, A.F.: Comprehensive Inorganic Chemistry, vol. 2, p. 1456. Pergamon Press, Oxford (1975)

    Google Scholar 

  32. Bhattacharya, S., Saha, B., Datta, A., Banerjee, P.: Electron transfer reactions of Ni(III) and Ni(IV) complexes. Coord. Chem. Rev. 170, 47–74 (1988)

    Article  Google Scholar 

  33. Haines, R.I., McAuley, A.: Synthesis and reactions of nickel(III) complexes. Coord. Chem. Rev. 39, 77–82 (1981)

    Article  CAS  Google Scholar 

  34. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, p. 153. Wiley Eastern, New York (1996)

    Google Scholar 

  35. Singh, H.S., Singh, R.K., Singh, S.M., Sisodia, A.K.: A kinetic and mechanistic study of oxidation of tartaric acid by potassium bromate in perchloric acid medium catalysed by Ru(III). J. Phys. Chem. 81, 1044–1047 (1977)

    Article  CAS  Google Scholar 

  36. Chimatadar, S.A., Kini, A.K., Nandibewoor, S.T.: Ruthenium(III) catalysed oxidation of l-alanine by alkaline permanganate: A kinetic and mechanistic approach. Inorg. React. Mech. 5, 231–244 (2005)

    Google Scholar 

  37. Desai, S.M., Halligudi, N.N., Nandibewoor, S.T.: Kinetics and mechanism of ruthenium(III)-catalysed oxidation of allyl alcohol by acid bromate-autocatalysis in catalysis. Transition Met. Chem. 27, 207–212 (2002)

    Article  CAS  Google Scholar 

  38. Shetter, R.S., Nandibewoor, S.T.: Kinetic, mechanistic and spectral investigations of ruthenium(III)-catalysed oxidation of 4-hydroxycoumarin by alkaline diperiodatonickelate(IV) (stopped flow technique). J. Mol. Catal. 238A, 137143 (2005)

    Google Scholar 

  39. Veeresh, S., Veeresh, T.M., Nandibewoor, S.T.: Ruthenium(III) catalysed oxidation of l-leucine by a new oxidant, diperiodatoargentate(III) in aqueous alkaline medium. Polyhydron 26, 431–436 (2006)

    Google Scholar 

  40. Rangappa, K.S., Raghavendra, M.P., Mahadevappa, D.S., Channegouda, D.: Sodium N-chlorobenzenesulfonamide as a selective oxidant for hexosamines in alkaline medium: A kinetic and mechanistic study. J. Org. Chem. 63, 531–536 (1998)

    Article  CAS  Google Scholar 

  41. Kamble, D.L., Nandibewoor, S.T.: Osmium(VIII)/ruthenium(III) catalysis of periodate oxidation of acetaldehyde in aqueous alkaline medium. J. Phys. Org. Chem. 11, 171–176 (1998)

    Article  CAS  Google Scholar 

  42. Weissberger, A., Lewis, E.S. (eds.): Investigations of Rates and Mechanism of Reactions in Techniques of Chemistry, vol. 4, p. 421. Wiley, New York (1974)

    Google Scholar 

  43. Martinez, M., Pitarque, M.A., Eldik, R.V.: Outer-sphere redox reactions of [CoIII(NH3)5(HxPyOz)](m−3)− complexes. A temperature- and pressure-dependence kinetic study on the influence of the phosphorus oxoanions. J. Chem. Soc. Dalton Trans. 2665–2671 (1996). doi:10.1039/DT9960002665

  44. Farokhi, S.A., Nandibewoor, S.T.: Kinetic mechanistic and spectral studies for the oxidation of sulfanilic acid by alkaline hexacynoferrate(III). Tetrahedron 59, 7595–7602 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the UGC, New Delhi, for the sanction of research grant (F. 36-136/2008 (SR) dated 27-03-2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Supplementary material 2 (DOC 91 kb)

Appendix

Appendix

According to Scheme 3:

$$ {\text{rate}} = k_{1} [{\text{C}}]\left[ {{\text{Ag}}({\text{H}}_{2} {\text{IO}}_{6} )({\text{H}}_{2} {\text{O}})} \right] = \frac{{k_{1} K_{1} K_{2} K_{3} \left[ {\text{DPA}} \right]\left[ {{\text{Ru}}({\text{III}})} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {\textsc{d}} {\text{-Glu}} \right]}}{{\left[ {\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]} \right]}} $$
(A1)

The total concentration of DPA is given by (where t and f refer to total and free concentrations):

$$ \begin{aligned} \left[ {\text{DPA}} \right]_{\text{t}} & = \left[ {\text{DPA}} \right]_{\text{f}} + \left[ {{\text{Ag}}\left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)} \right]^{2 - } + \left[ {{\text{Ag}}\left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right] \\ & = \left[ {\text{DPA}} \right]_{\text{f}} \left\{ {\frac{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]}}} \right\} \\ \end{aligned} $$

Therefore:

$$ \left[ {\text{DPA}} \right]_{\text{f}} = \frac{{\left[ {\text{DPA}} \right]_{\text{t}} \left[ {{\text{H}}_{2} {\text{IO}}_{6}^{3 - } } \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]}} $$
(A2)

In view of the low [DPA] and [\( {\text{H}}_{3} {\text{IO}}_{6}^{2 - } \)] values used:

$$ [{\text{OH}}^{ - } ]_{\text{t}} = [{\text{OH}}^{ - } ]_{\text{f}} $$
(A3)

Similarly:

$$ \left[ {\textsc{d}} {\text{-Glu}} \right]_{\text{t}} = \, \left[ {\textsc{d}} {\text{-Glu}} \right]_{\text{f}} + [{\text{C}}] = \left[ {\textsc{d}} {\text{-Glu}} \right]_{\text{f}} (1 \, + K_{3} \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right] $$

and in view of the low Ru(III) concentrations used:

$$ \begin{aligned} \left[ {\textsc{d}} {\text{-Glu}} \right]_{\text{t}} & = \, \left[ {\textsc{d}} {\text{-Glu}} \right]_{\text{f}} \\ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{t} & = \, \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} + [{\text{C}}] = \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} (1 + K_{3} \left[ {\textsc{d}} {\text{-Glu}} \right] \\ \end{aligned} $$
(A4)
$$ \left[ {{\text{Ru}}({\text{III}})} \right]_{\text{f}} = \frac{{\left[ {{\text{Ru}}({\text{III}})} \right]_{\text{t}} }}{{1 + K_{3} \left[ {\textsc{d}} {\text{-Glu}} \right]}} $$
(A5)

Substituting Eqs. A2A5 into A1 gives:

$$ \begin{aligned} \frac{\text{rate}}{{\left[ {\text{DPA}} \right]}} & = k_{\text{C}} = k_{\text{T}} - k_{\text{U}} \\ & = \frac{{k_{1} K_{1} K_{2} K_{3} \left[ {\textsc{d}} {\text{-Glu}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Ru}}({\text{III}})} \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {\textsc{d}} {\text{-Glu}} \right]}} \\ \end{aligned} $$

The terms (K 3[\( {\text{H}}_{3} {\text{IO}}_{6}^{2 - } \)][d-Glu]) and (K 1 K 3[d-Glu][OH][\( {\text{H}}_{3} {\text{IO}}_{6}^{2 - } \)]) of the denominator are neglected in the view of low concentrations of d-Glu and periodate. Similarly, the rate law for the osmium(VIII) catalyzed reaction was similarly derived.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sataraddi, S.R., Nandibewoor, S.T. Oxidation of d-Glucose by Silver(III) Periodate Complex in the Presence of Ru(III)/Os(VIII) as a Homogeneous Catalyst: A Comparative Mechanistic Study (Stopped Flow Technique). J Solution Chem 42, 897–915 (2013). https://doi.org/10.1007/s10953-013-0002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0002-1

Keywords

Navigation