Skip to main content
Log in

Silver(III) Periodate Complex—An Oxidant for Free Radical Induced Uncatalyzed and Ruthenium(III) Catalyzed Oxidation of Barbituric Acid

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The oxidation of a heterocyclic compound—barbituric acid (BBA) by diperiodatoargentate(III) (DPA) was carried out in the absence and presence of ruthenium(III) catalyst in alkaline medium with a constant ionic strength of 0.20 mol dm–3 at 298 K. The reaction was monitored spectrophotometrically. The reaction was of first order with respect to [DPA] and was less than unity order with respect to [BBA] in both catalyzed and uncatalyzed cases. Positive and negative fractional order in [OH] for uncatalyzed and Ru(III) catalyzed reaction respectively was observed, whereas perioadate has retarding effect in both the cases. A unity order with respect to [Ru(III)] was observed. The uncatalyzed reaction in alkaline medium has been shown to proceed via a DPA–BBA complex, which decomposes in a rate determining step to give the free radicals, which is followed by other fast steps to give the products. Whereas in catalyzed reaction, it has been shown to proceed via a Ru(III)–BBA complex, and similar other steps as in uncatalyzed reaction to give the products. The reaction constants involved in the various steps involved in the mechanisms were calculated for both the reactions. The catalytic constant (kC) was also calculated for catalyzed reaction at four temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic data for all the equilibrium steps were determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 1.
Fig. 6.
Scheme 2.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. H. Garrett and C. M. Grisham, Principals of Biochemistry with a Human Focus (Brooks/Cole Thomson Learning, U. S., 1997).

    Google Scholar 

  2. D. J. Brown, Heterocyclic Compounds: The Pyrimidines (Interscience, New York, 1994), Vol. 52.

    Book  Google Scholar 

  3. E. G. Brown, Ring Nitrogen and Key Biomolecules: The Biochemistry of N-Heterocycles (Kluwer Academic, Boston, 1998).

    Book  Google Scholar 

  4. H. C. Box and E. E. Budzinski, J. Chem. Phys. 59, 1588 (1973).

    Article  CAS  Google Scholar 

  5. E. R. Garrett, J. T. Bojarski and G. J. Yakatan, J. Pharm. Sci. 60, 1145 (1971).

    Article  CAS  Google Scholar 

  6. W. Löscher and M. A. Rogawski, Epilepsia 53, 12 (2012).

    Article  Google Scholar 

  7. S. B. Konnur and S. T. Nandibewoor, Russ. J. Phys. Chem. A. 93, 1686 (2019)

    Article  CAS  Google Scholar 

  8. J. H. Shan, H. Y. Wang, C. Y. Song, and F. Wang, Bull. Chem. Soc. Ethiop. 23, 297 (2009).

    Article  CAS  Google Scholar 

  9. R. S. Shettar and S. T. Nandibewoor, J. Mol. Catal. A: Chem. 234, 137 (2005).

    Article  CAS  Google Scholar 

  10. B. Sethuram, Some Aspects of Electron-Transfer Reactions Involving Organic Molecules (Allied, New Delhi, 2003), p. 151.

    Google Scholar 

  11. A. Kumar and P. Kumar, J. Phys. Org. Chem. 12, 79 (1999).

    Article  CAS  Google Scholar 

  12. C. Yang, Z. Zhang, and J. Wang, Luminiscence 25, 36 (2010).

    CAS  Google Scholar 

  13. S. Oi, Y. Ogino, S. Fukita, and Y. Inoue, Org. Lett. 4, 1783 (2002).

    Article  CAS  Google Scholar 

  14. L. Ackermann, S. I. Kozhushkov, and D. S. Yufit, Chem. Eur. 18, 12068 (2012).

    Article  CAS  Google Scholar 

  15. Z. F. Ke and T. R. Cundari, Organometallics 29, 821 (2010).

    Article  CAS  Google Scholar 

  16. C. S. Reddy and T. Vijaykumar, Indian J. Chem. A 34, 615 (1995).

    Google Scholar 

  17. P. A. Magdum, A. M. Bagoji, and S. T. Nandibewoor, J. Phys. Org. Chem. 28, 743 (2015).

    Article  CAS  Google Scholar 

  18. G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed. (Longmans Singapore, Singapore, 1996), pp. 467, 391.

  19. S. Kato and G. Dryhurst, J. Electroanal. Chem. 80, 181 (1977).

    Article  CAS  Google Scholar 

  20. R. V. Jagdeesh and Puttaswamy, J. Phys. Org. Chem. 21, 844 (2008).

    Article  Google Scholar 

  21. E. A. Moelwyn-Hughes, Kinetics of Reactions in Solutions (Oxford Univ. Press, London, 1947), p. 297.

    Google Scholar 

  22. L. J. Krishenbaum and L. Mrozowski, Inorg. Chem. 17, 3718 (1978).

    Article  Google Scholar 

  23. R. Banerjee, R. Das, and S. Mukhopadhyay, J. Chem. Soc., Dalton Trans. 28, 1317 (1992).

    Article  Google Scholar 

  24. C. E. Crouthamel, A. M. Hayes, and D. S. Martin, J. Am. Chem. Soc. 73, 82 (1951).

    Article  CAS  Google Scholar 

  25. P. Jayaprakash Rao, B. Sethuram, and T. Navneeth Rao, React. Kinet. Catal. Lett. 29, 289 (1985).

    Article  Google Scholar 

  26. S. Bhattacharya, B. Saha, A. Datta, and P. Banerjee, Coord. Chem. Rev. 170, 47 (1998).

    Article  CAS  Google Scholar 

  27. R. Chang, Physical Chemistry with Applications to Biological Systems (McMillan, New York, 1981), p. 326.

    Google Scholar 

  28. T. S. Kiran and S. T. Nandibewoor, J. Chem. Res. 6, 431 (2006).

    Article  Google Scholar 

  29. K. S. Rangappa, M. P. Raghavendra, D. S. Mahadevappa, and D. Channegouda, J. Org. Chem. 63, 531 (1998).

    Article  CAS  Google Scholar 

  30. A. Weissberger and E. S. Lewis, Investigation of Rates and Mechanism of Reactions in Techniques of Chemistry (Wiley Interscience, New York, 1974), Vol. 4, pp. 421.

    Google Scholar 

  31. T. S. Kiran, C. V. Hiremath, and S. T. Nandibewoor, Appl. Catal. A 305, 79 (2006).

    Article  Google Scholar 

  32. R. E. Connick and D. A. Fine, J. Am. Chem. Soc. 82, 4187 (1960).

    Article  CAS  Google Scholar 

  33. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed. (Wiley, New York, 1999).

    Google Scholar 

  34. S. Sandu, B. Sethuram, and T. N. Rao, J. Indian Chem. Soc. 60, 198 (1983).

    Google Scholar 

  35. H. P. Panda and B. D. Sahu, Indian J. Chem. 28A, 323 (1989).

    CAS  Google Scholar 

  36. V. Tegginamath, C. V. Hiremath, and S. T. Nandibewoor, J. Phys. Org. Chem. 20, 55 (2007).

    Article  CAS  Google Scholar 

  37. S. J. Malode, J. C. Abbar, and S. T. Nandibewoor, Inorg. Chim. Acta 363, 2430 (2010).

    Article  CAS  Google Scholar 

  38. E. A. Moelwyn-Hughes, Physical Chemistry (Pergamon, New York, 1961).

    Google Scholar 

  39. E. S. Amis, Solvents Effect on Reaction Rates and Mechanisms (Academic, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atmanand M. Bagoji or Sharanappa T. Nandibewoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagoji, A.M., Konnur, S.B., Gokavi, N.M. et al. Silver(III) Periodate Complex—An Oxidant for Free Radical Induced Uncatalyzed and Ruthenium(III) Catalyzed Oxidation of Barbituric Acid. Russ. J. Phys. Chem. 94, 2010–2023 (2020). https://doi.org/10.1134/S0036024420100052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100052

Keywords:

Navigation