Skip to main content
Log in

Volumetric Properties of Binary Mixtures of Glycerol + tert-Butanol over the Temperature Range 293.15 to 348.15 K at Atmospheric Pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of glycerol (1) + tert-butanol (2) mixtures were measured over the temperature range 293.15 to 348.15 K at atmospheric pressure, over the entire composition range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial molar volumes of glycerol and tert-butanol, thermal isobaric expansivities of the mixture and partial molar expansivities of the components were calculated. The excess molar volumes of the mixtures are negative at all temperatures, and deviations from ideality increase with increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation. Partial molar volumes of glycerol decrease with increasing tert-butanol concentration. The temperature dependence of the partial molar volumes of glycerol is characterized by an inversion at x 2≈0.7. “Negative expansion” of the limiting partial volumes of glycerol was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Towey, J.J., Soper, A.K., Dougan, L.: The structure of glycerol in the liquid state: a neutron diffraction study. Phys. Chem. Chem. Phys. 13, 9397–9406 (2011)

    Article  CAS  Google Scholar 

  2. Champeney, D.C., Joarder, R.N., Dore, J.C.: Structural studies of liquid D-glycerol by neutron-diffraction. Mol. Phys. 58, 337–347 (1986)

    Article  CAS  Google Scholar 

  3. Chelli, R., Gervasio, F.L., Gellini, C., Procacci, P., Cardini, G., Schettino, V.: Density functional calculation of structural and vibrational properties of glycerol. J. Phys. Chem. A 104, 5351–5357 (2000)

    Article  CAS  Google Scholar 

  4. Chelli, R., Procacci, P., Cardini, G., Della Valle, R.G., Califano, S.: Glycerol condensed phases Part I. A molecular dynamics study. Phys. Chem. Chem. Phys. 1, 871–877 (1999)

    Article  CAS  Google Scholar 

  5. van Koningsveld, H.: The crystal structure of glycerol and its conformation. Recl. Trav. Chim. Pays-Bas. 87, 243–254 (1968)

    Article  Google Scholar 

  6. Dawidowski, J., Bermejo, F.J., Fayos, R., Perea, R.F., Bennington, S.M., Criado, A.: Coherent neutron scattering response from glassy glycerol. Phys. Rev. E 53, 5079–5088 (1996)

    Article  CAS  Google Scholar 

  7. Garawia, M., Dorea, J.C., Champeney, D.C.: Structural studies of liquid D-glycerol II. Molecular conformation and long range correlations. Mol. Phys. 62, 475–487 (1987)

    Article  Google Scholar 

  8. Dashnau, J.L., Nucci, N.V., Sharp, K.A., Vanderkooi, J.M.: Hydrogen bonding and the cryoprotective properties glycerol/water mixtures. J. Phys. Chem. B 110, 13670–13677 (2006)

    Article  CAS  Google Scholar 

  9. Jain, P., Levchenko, A., Yu, P., Sen, S.: Molecular dynamics in supercooled glycerol: results from 13C NMR spectroscopy. J. Chem. Phys. 130, 194506–194506-5 (2009)

    Article  CAS  Google Scholar 

  10. Marcus, Y.: Some thermodynamic and structural aspects of mixtures of glycerol with water. Phys. Chem. Chem. Phys. 2, 4891–4896 (2000)

    Article  CAS  Google Scholar 

  11. Westh, P., Rasmussen, E.L., Koga, Y.: Intermolecular Interactions in ternary glycerol–sample–H2O: towards understanding the Hofmeister series (V). J. Solution Chem. 40, 93–105 (2011)

    Article  CAS  Google Scholar 

  12. Zelent, B., Nucci, N.V., Vanderkooi, J.M.: Liquid and ice water and glycerol/water glasses compared by infrared spectroscopy from 295 to 12 K. J. Phys. Chem. A 108, 11141–11150 (2004)

    Article  CAS  Google Scholar 

  13. Callam, C.S., Singer, S.J., Lowary, T.L., Hadad, C.M.: Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems. J. Am. Chem. Soc. 123, 11743–11754 (2001)

    Article  CAS  Google Scholar 

  14. Chelli, R., Procacci, P., Cardini, G., Califano, S.: Glycerol condensed phases. Part II: a molecular dynamics study of the conformational structure and hydrogen bonding. Phys. Chem. Chem. Phys. 1, 879–885 (1999)

    Article  CAS  Google Scholar 

  15. Perron, G., Desnoyers, J.E.: Heat capacities and volumes of interaction between mixtures of alcohols in water at 298.15 K. J. Chem. Thermodyn. 13, 1105–1121 (1981)

    Article  CAS  Google Scholar 

  16. Alary, I.F., Simard, M.A., Dumont, J., Jolicoeur, C.: Simultaneous flow measurement of specific heats and thermal expansion coefficients of liquids: aqueous t-BuOH mixtures and neat alkanols and alkanediols at 25  °C. J. Solution Chem. 11, 755–776 (1982)

    Article  CAS  Google Scholar 

  17. Tamura, K., Osaki, A., Koga, Y.: Compressibilities of aqueous tert-butanol in the water-rich region at 25 °C: partial molar fluctuations and mixing schemes. Phys. Chem. Chem. Phys. 1, 121–126 (1999)

    Article  CAS  Google Scholar 

  18. Franks, F., Smith, H.T.: Precision densities of dilute aqueous solutions of the isomeric butanols. J. Chem. Eng. Data 13, 538–541 (1968)

    Article  CAS  Google Scholar 

  19. Sakurai, M., Nakamura, K., Nitta, K.: Volumetric properties of dilute aqueous alcohol solutions at different temperatures. Bull. Chem. Soc. Jpn. 67, 1580–1587 (1994)

    Article  CAS  Google Scholar 

  20. Sakurai, M.: Partial molar volumes in aqueous mixtures of nonelectrolytes. I. t-Butyl alcohol. Bull. Chem. Soc. Jpn. 60, 1–7 (1987)

    Article  CAS  Google Scholar 

  21. Hvidt, A., Moss, R., Nielsen, G.: Volume properties of aqueous solutions of tert-butyl alcohol at temperatures between 5 and 25  °C. Acta Chem. Scand. 32, 274–280 (1978)

    Article  Google Scholar 

  22. Kim, E.S., Marsh, K.N.: Excess volumes for 2-methyl-2-propanol–water at 5 K intervals from 303.15 to 323.15 K. J. Chem. Eng. Data 33, 288–292 (1988)

    Article  CAS  Google Scholar 

  23. Egorov, G.I., Makarov, D.M.: Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa. J. Chem. Thermodyn. 43, 430–441 (2011)

    Article  CAS  Google Scholar 

  24. Rabinovich, V.A., Havin, Z.Ya.: In: Potekhin, A.A., Efimov, A.I. (eds.) Short Chemical Handbook, 3th edn. Khimiya Press, Moscow (1991)

    Google Scholar 

  25. Lide, D.R. (ed.): Handbook of Chemistry and Physics, 82nd edn. CRC Press, New York (2001)

    Google Scholar 

  26. Weissberger, F., Proskauer, E.S., Riddik, J.A., Toops, E.E.: Organic Solvents. Physical Properties and Methods of Purification. Interscience, New York (1955)

    Google Scholar 

  27. Egorov, G.I., Syrbu, A.A., Kolker, A.M.: Volume properties of the H2O–DMF mixture at the pressure 0.101 MPa in the temperature range 278.15–323.15 K. Russ. J. Gen. Chem. 72, 693–696 (2002)

    Article  CAS  Google Scholar 

  28. Egorov, G.I., Afanas’ev, V.N., Kolker, A.M.: VTx properties of the system water–2-propanol in the range 275.15–338.15 K. Russ. J. Gen. Chem. 74, 171–173 (2004)

    Article  CAS  Google Scholar 

  29. Egorov, G.I., Makarov, D.M.: The bulk properties of ethylene glycol–dimethylsulfoxide mixtures over the temperature range 278–323 K at p=0.1 MPa. Russ. J. Phys. Chem. A 82, 1778–1784 (2008)

    Article  CAS  Google Scholar 

  30. Egorov, G.I., Makarov, D.M.: The bulk properties of the water–dimethylsulfoxide system at 278–323.15 K and atmospheric pressure. Russ. J. Phys. Chem. A 83, 693–698 (2009)

    Article  CAS  Google Scholar 

  31. Egorov, G.I., Makarov, D.M., Kolker, A.M.: Volumetric properties of the water–ethylene glycol mixtures in the temperature range 278–333.15 K at atmospheric pressure. Russ. J. Gen. Chem. 80, 1577–1585 (2010)

    Article  CAS  Google Scholar 

  32. Egorov, G.I., Gruznov, E.L., Kolker, A.M.: pV m Tx properties of water–acetone mixtures over the temperature range 298–323 K and pressures from 1 to 1000 bar: isothermal compressibility, volume expansion coefficients and inner pressure of water–acetone mixtures. Russ. J. Phys. Chem. A 70, 197–204 (1996)

    Google Scholar 

  33. Egorov, G.I., Syrbu, A.A., Kolker, A.M.: The pV m x properties of water–acetamide mixtures at 298.15 K over the pressure range of 1–1000 bar. J. Phys. Chem. A 73, 1949–1951 (1999)

    Google Scholar 

  34. Egorov, G.I., Kolker, A.M.: Effect of pressure and temperature on volume properties of water–N,N-dimethylformamide mixtures. J. Mol. Liq. 106, 239–248 (2003)

    Article  CAS  Google Scholar 

  35. Egorov, G.I., Makarov, D.M.: Compressibility coefficients of water–2-propanol mixtures over the temperature and pressure ranges 278–323.15 K and 1–1000 bar. Russ. J. Phys. Chem. A 82, 1037–1041 (2008)

    Article  CAS  Google Scholar 

  36. Egorov, G.I., Makarov, D.M.: The compressibility of water–dimethyl sulfoxide mixtures over the temperature and pressure ranges 278–323.15 K and 1–1000 bar. Russ. J. Phys. Chem. A 83, 2058–2065 (2009)

    Article  CAS  Google Scholar 

  37. Egorov, G.I., Makarov, D.M., Kolker, A.M.: Densities and volumetric properties of ethylene glycol + dimethylsulfoxide mixtures at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa. J. Chem. Eng. Data 55, 3481–3488 (2010)

    Article  CAS  Google Scholar 

  38. Gordon, A.J., Ford, R.A.: The Chemist’s Companion. A Handbook of Practical Data, Techniques, and References. Wiley, New York (1972)

    Google Scholar 

  39. Xu, L., Hu, X., Lin, R.: Volumetric properties of glycerol with N,N-dimethylformamide and with water at 25 and 35 °C. J. Solution Chem. 32, 363–370 (2003)

    Article  CAS  Google Scholar 

  40. Li, Q.-S., Su, M.-G., Wang, S.: Densities and excess molar volumes for binary glycerol + 1-propanol, + 2-propanol, + 1,2-propanediol, and + 1,3-propanediol mixtures at different temperatures. J. Chem. Eng. Data 52, 1141–1145 (2007)

    Article  CAS  Google Scholar 

  41. Ge, M.-L., Ma, J.-L., Chu, B.: Densities and viscosities of propane-1,2,3-triol + ethane-1,2-diol at T=(298.15 to 338.15) K. J. Chem. Eng. Data 55, 2649–2651 (2010)

    Article  CAS  Google Scholar 

  42. Martınez, S., Garriga, R., Perez, P., Gracia, M.: Densities and viscosities of binary mixtures of butanenitrile with butanol isomers at several temperatures. J. Chem. Eng. Data 45, 1182–1188 (2000)

    Article  Google Scholar 

  43. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Article  Google Scholar 

  44. Torres, R.B., Marchiore, A.C.M., Volpe, P.L.O.: Volumetric properties of binary mixtures of (water + organic solvents) at temperatures between T=288.15 K and T=303.15 K at p=0.1 MPa. J. Chem. Thermodyn. 38, 526–541 (2006)

    Article  CAS  Google Scholar 

  45. Narten, A.H., Sandler, S.I.: X-ray diffraction study of liquid tertiary butyl alcohol at 26 °C. J. Chem. Phys. 71, 2069–2073 (1979)

    Article  CAS  Google Scholar 

  46. Bowron, D.T., Finney, J.L., Soper, A.K.: The structure of pure tertiary butanol. Mol. Phys. 93, 531–543 (1998)

    CAS  Google Scholar 

  47. Kusalik, P.G., Lyubartsev, A.P., Bergman, D.L., Laaksonen, A.: Computer simulation study of tert-butyl alcohol. 2. Structure in aqueous solution. J. Phys. Chem. B 104, 9533–9539 (2000)

    Article  CAS  Google Scholar 

  48. Fukasawa, T., Tominaga, Y., Wakisaka, A.: Molecular association in binary mixtures of tert-butyl alcohol–water and tetrahydrofuran–heavy water studied by mass spectrometry of clusters from liquid droplets. J. Phys. Chem. A 108, 59–63 (2004)

    Article  CAS  Google Scholar 

  49. Wojtkow, D., Czarnecki, M.A.: Effect of temperature and concentration on the structure of tert-butyl alcohol/water mixtures: near-infrared spectroscopic study. J. Phys. Chem. A 109, 8218–8224 (2005)

    Article  CAS  Google Scholar 

  50. Yoshida, K., Yamaguchi, T., Kovalenko, A., Hirata, F.: Structure of tert-butyl alcohol–water mixtures studied by the RISM theory. J. Phys. Chem. B 106, 5042–5049 (2002)

    Article  CAS  Google Scholar 

  51. Nath, P.P., Sarkar, S., Krishna, P.S.R., Joarder, R.N.: Intermolecular structure of liquid D-tert-butanol by neutron-diffraction data. Appl. Phys. A 74, S348–S351 (2002)

    Article  CAS  Google Scholar 

  52. Hamilton, D., Stokes, R.H.: Apparent molar volumes of urea in several solvents as functions of temperature and concentration. J. Solution Chem. 1, 213–221 (1972)

    Article  CAS  Google Scholar 

  53. Abrosimov, V.K., Ivanov, E.V.: Water, structure, state and solvation, achievements of last years. In: Kutepov, A.M. (ed.) Water in Nonaqueous Solutions: State and Solvation, pp. 277–346. Nauka, Moscow (2003)

    Google Scholar 

  54. Nakajima, T., Komatsu, T., Nakagawa, T.: Apparent molal volumes and adiabatic compressibilities of n-alkanols and α,ω-alkane diols in dilute aqueous solutions at 5, 25, and 45 °C. I. Apparent molal volumes. Bull. Chem. Soc. Jpn. 48, 783–787 (1975)

    Article  CAS  Google Scholar 

  55. Sakurai, M.: Partial molar volumes in aqueous mixtures of nonelectrolytes. II. Isopropyl alcohol. J. Solution Chem. 17, 267–276 (1988)

    Article  CAS  Google Scholar 

  56. Franks, F., Smith, H.T.: Volumetric properties of alcohols in dilute aqueous solutions. Trans. Faraday Soc. 64, 2962–2972 (1968)

    Article  CAS  Google Scholar 

  57. de Visser, C., Perron, G., Desnoyers, J.E.: The heat capacities, volumes, and expansibilities of tert-butyl alcohol–water mixtures from 6 to 65 °C. Can. J. Chem. 55, 856–862 (1977)

    Article  Google Scholar 

  58. Hyncica, P., Hnedkovsky, L., Cibulka, I.: Partial molar volumes of organic solutes in water. XIII. Butanols (aq) at temperatures T=298 K to 573 K and at pressures up to 30 MPa. J. Chem. Thermodyn. 38, 418–426 (2006)

    Article  CAS  Google Scholar 

  59. Sakurai, M., Nakagawa, T.: Densities of dilute solutions of water in n-alkanols at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Partial molar volumes of water in n-alkanols. J. Chem. Thermodyn. 16, 171–174 (1984)

    Article  CAS  Google Scholar 

  60. Sakurai, M.: Partial molar volumes in aqueous mixtures of nonelectrolytes. III. t-Pentyl alcohol. J. Solution Chem. 18, 37–44 (1989)

    Article  CAS  Google Scholar 

  61. Egorov, G.I., Makarov, D.M.: Volumetric properties of the binary mixture of ethylene glycol + tert-butanol at T=(278.15,288.15,298.15,308.15,323.15,333.15,348.15) K under atmospheric pressure. J. Mol. Liq. (in press)

  62. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties and Methods of Purification; Techniques of Chemistry. Wiley-Interscience, New York (1986)

    Google Scholar 

  63. Soujanya, J., Satyavathi, B., Vittal Prasad, T.E.: Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures. J. Chem. Thermodyn. 42, 621–624 (2010)

    Article  CAS  Google Scholar 

  64. Adamenko, I.I., Bulavin, L.A., Ilyin, V., Zelinsky, S.A., Moroz, K.O.: Anomalous behavior of glycerol–water solutions. J. Mol. Liq. 127, 90–92 (2006)

    Article  CAS  Google Scholar 

  65. Sanz, M.T., Blanco, B., Beltran, S., Cabezas, J.L., Coca, J.: Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol, and glycerol. J. Chem. Eng. Data 46, 635–639 (2001)

    Article  Google Scholar 

  66. Verhoeye, L., Lauwers, E.: Vapor–liquid equilibrium of the system 2-propanol–water–1,2,3-propanetriol at 760 mm of Hg. J. Chem. Eng. Data 14, 306–309 (1969)

    Article  CAS  Google Scholar 

  67. Sadek, H., Habez, A.M., Khalil, F.X.: Conductance of KIO3 in glycerol–water mixtures. Electrochim. Acta 14, 1089–1096 (1969)

    Article  CAS  Google Scholar 

  68. Murthy, M.N., Subrahmahyan, S.V.: Behaviour of excess heat capacity of aqueous non-electrolytes. Indian J. Pure Appl. Phys. 15, 485–489 (1977)

    CAS  Google Scholar 

  69. Uosaki, Y., Kitaura, S., Moriyoshi, T.: Static relative permittivities of water + ethane-1,2-diol and water + propane-1,2,3-triol under pressures up to 300 MPa at 298.15 K. J. Chem. Eng. Data 51, 423–429 (2006)

    Article  CAS  Google Scholar 

  70. Darbari, G.S., Singh, R.P., Verma, G.S., Rajagopalan, S.: Acoustic absorption in mixtures of glycerol and water below 1 MHz. II. Nuovo Cimento B 52, 1–17 (1967)

    Article  CAS  Google Scholar 

  71. Nain, A.K.: Densities and volumetric properties of binary mixtures of aniline with 1-propanol, 2-propanol, 2-methyl-1-propanol, and 2-methyl-2-propanol at temperatures from 293.15 to 318.15 K. Int. J. Thermophys. 28, 1228–1244 (2007)

    Article  CAS  Google Scholar 

  72. Anson, A., Garriga, R., Martinez, S., Perez, P., Gracia, M.: Densities and viscosities of binary mixtures of 1-chlorobutane with butanol isomers at several temperatures. J. Chem. Eng. Data 50, 677–682 (2005)

    Article  CAS  Google Scholar 

  73. Kenttaemaa, J., Tommila, E., Martti, M.: Some thermodynamic properties of the system t-butanol + water. Ann. Acad. Sci. Fenn. Ser. A2 93, 1–20 (1959)

    Google Scholar 

  74. TRC Thermodynamic Tables. Non-Hydrocarbons. Thermodynamic Research Center, Texas A&M University, College Station, TX, d-5030 (1966)

  75. Langa, E., Mainar, A.M., Pardo, J.I., Urieta, J.S.: Excess enthalpy, density, and speed of sound for the mixtures β-pinene + 2-methyl-1-propanol or 2-methyl-2-propanol at several temperatures. J. Chem. Eng. Data 52, 2182–2187 (2007)

    Article  CAS  Google Scholar 

  76. Kubota, H., Tanaka, Y., Makita, T.: Volumetric behavior of pure alcohols and their water mixtures under high pressure. Inter. J. Thermophys. 8, 47–70 (1987)

    Article  Google Scholar 

  77. Harris, K.R., Newitt, P.J., Back, P.J., Woolf, L.A.: Thermodynamic property measurements for 2-methyl-2-propanol + water from the freezing surface to 75 °C. High Temp., High Press. 30, 51–62 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Russian Foundation for Basic Research (project 09-03-97501a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadiy I. Egorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, G.I., Makarov, D.M. Volumetric Properties of Binary Mixtures of Glycerol + tert-Butanol over the Temperature Range 293.15 to 348.15 K at Atmospheric Pressure. J Solution Chem 41, 536–554 (2012). https://doi.org/10.1007/s10953-012-9813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9813-8

Keywords

Navigation