Skip to main content
Log in

Thermodynamic Studies of Amino Acid–Denaturant Interactions in Aqueous Solutions at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

As proteins and other biomolecules consisting of amino acid residues require external additives for their dissolution and recrystallization, it is important to have information about how such additives interact with amino acids. Therefore we have studied the interactions of simple model amino acids with the additives urea and guanidine hydrochloride in aqueous solutions at 298.15 K, using vapor pressure osmometry. During the measurements, the concentration of urea was fixed as ∼2 mol⋅kg−1 and that of guanidine hydrochloride was fixed as ∼1 mol⋅kg−1 whereas the concentrations of amino acids were varied. The experimental water activity data were processed to get the individual activity coefficients of all the three components in the ternary mixture. Further, the activity coefficients were used to get the excess Gibbs energies of solutions and Gibbs energies for transfer of either amino acids from water to aqueous denaturant solutions or denaturant from water to aqueous amino acid solutions. An application of the McMillan-Mayer theory of solutions through virial expansion of transfer Gibbs energies was made to get pair and triplet interaction parameter whose sign and magnitude yielded information about amino acid–denaturant interactions, relative to their interactions with water. The pair interaction parameters have been further used to obtain salting constants and in turn the thermodynamic equilibrium constant values for the amino acid–denaturant mixing process in aqueous solutions at 298.15 K. The results have been explained in terms of hydrophobic hydration, hydrophobic interactions and amino acid–denaturant binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–59 (1959)

    Article  CAS  Google Scholar 

  2. Tanford, C.: Isothermal unfolding of globular proteins in aqueous urea solutions. J. Am. Chem. Soc. 86, 2050–2059 (1964)

    Article  CAS  Google Scholar 

  3. Singer, S.J.: In: Rhothfield, L. (ed.) Structure and Function of Biological Membranes. Academic Press, New York (1971)

    Google Scholar 

  4. Coleman, R.: Membrane-bound enzymes and membrane ultrastructure. Biochim. Biophys. Acta 300, 1–30 (1973)

    CAS  Google Scholar 

  5. Franks, F.: In: Franks, F. (ed.) Water—A Comprehensive Treatise, vol. IV. Plenum Press, New York (1974)

    Google Scholar 

  6. Ooi, T., Oobatake, M.: Effects of hydrated water on protein unfolding. J. Biochem. 103, 114–120 (1988)

    CAS  Google Scholar 

  7. Ooi, T., Oobatake, M., Nemethy, G., Scheraga, H.A.: Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 84, 3086–3090 (1987)

    Article  CAS  Google Scholar 

  8. Makhatadze, G.I., Privalov, P.L.: Contribution of hydration to protein folding thermodynamics: I. The enthalpy of hydration. J. Mol. Biol. 232, 639–659 (1993)

    Article  CAS  Google Scholar 

  9. DeKoster, G.T., Robertson, A.D.: Calorimetrically-derived parameters for protein interactions with urea and guanidine-HCl are not consistent with denaturant m values. Biophys. Chem. 64, 59–68 (1997)

    Article  CAS  Google Scholar 

  10. Courtenay, E.S., Capp, M.W., Saecker, R.M., Record, M.T. Jr.: Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model. Proteins 41, 72–85 (2000)

    Article  Google Scholar 

  11. Courtenay, E.S., Capp, M.W., Saecker, R.M., Record, M.T. Jr.: Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Sci. 10, 2485–2497 (2001)

    Article  CAS  Google Scholar 

  12. Lee, M.-E., van der Vegt, N.F.A.: Does urea denature hydrophobic interactions. J. Am. Chem. Soc. 128, 4948–4949 (2006)

    Article  CAS  Google Scholar 

  13. Timasheff, S.N., Xie, G.: Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys. Chem. 105, 421–448 (2003)

    Article  CAS  Google Scholar 

  14. Makhatadze, G.I., Privalov, P.L.: Protein interactions with urea and guanidinium chloride a calorimetric study. J. Mol. Biol. 226, 491–505 (1992)

    Article  CAS  Google Scholar 

  15. Schellman, J.A., Gassner, N.C.: The enthalpy of transfer of unfolded proteins into solutions of urea and guanidinium chloride. Biophys. Chem. 59, 259–275 (1996)

    Article  CAS  Google Scholar 

  16. Miyawaki, O.: Hydration state change of proteins upon unfolding in sugar solutions. Biochim. Biophys. Acta 1774, 928–935 (2007)

    CAS  Google Scholar 

  17. Arakawa, T., Timasheff, S.N.: Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224, 169–177 (1983)

    Article  CAS  Google Scholar 

  18. Arakawa, T., Timasheff, S.N.: Stabilization of protein structure by sugars. Biochemistry 21, 6536–6544 (1982)

    Article  CAS  Google Scholar 

  19. Arakawa, T., Timasheff, S.N.: Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21, 6545–6552 (1982)

    Article  CAS  Google Scholar 

  20. Arakawa, T., Timasheff, S.N.: The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414 (1985)

    Article  CAS  Google Scholar 

  21. Rösgen, J., Pettitt, B.M., Bolen, D.W.: Protein folding, stability, and solvation structure in osmolyte solutions. Biophys. J. 89, 2988–2997 (2000)

    Article  Google Scholar 

  22. Courtenay, E.S., Capp, M.W., Anderson, C.F., Record, M.T. Jr.: Vapor pressure osmometry studies of osmolyte-protein interactions – Implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39, 4455–4471 (2000)

    Article  CAS  Google Scholar 

  23. Qu, Y., Bolen, C.L., Bolen, D.W.: Osmolyte-driven contraction of a random coil protein. Proc. Natl. Acad. Sci. USA 95, 9268–9273 (2005)

    Article  Google Scholar 

  24. Rösgen, J.: Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol. 428, 459–486 (2007)

    Article  Google Scholar 

  25. Athawale, M.V., Sarupria, S., Garde, S.: Enthalpy–entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. J. Phys. Chem. B 112, 5661–5670 (2008)

    Article  CAS  Google Scholar 

  26. Street, T.O., Bolen, D.W., Rose, G.D.: A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 103, 13997–14002 (2006)

    Article  CAS  Google Scholar 

  27. Stimson, E.R., Schrier, E.E.: Calorimetric studies of the interactions of guanidinium hydrochloride and potassium iodide with model amides in aqueous solution. Biopolymers 14, 509–520 (1975)

    Article  CAS  Google Scholar 

  28. Sijpkes, A.H., Oudhuis, A.A.C.M., Somsen, G.: Enthalpies of solution of amides and peptides in aqueous solutions of urea and in N,N-dimethylformamide at 298.15 K. J. Chem. Thermodyn. 21, 343–349 (1989)

    Article  CAS  Google Scholar 

  29. Lilley, T.H., Scott, R.P.: Aqueous solutions containing amino-acids and peptides. Part 2.—Gibbs function and enthalpy behaviour of the systems urea + glycine, urea + α-alanine, urea + α-aminobutyric acid and urea + glycylglycine at 298.15 K. J. Chem. Soc. Faraday Trans. I 72, 184–196 (1976)

    Article  CAS  Google Scholar 

  30. Arnold, A., Lilley, T.H.: Aqueous solutions containing amino acids and peptides 14. The enthalpy of interaction of β-alanine and urea. J. Chem. Thermodyn. 17, 99–100 (1985)

    Article  CAS  Google Scholar 

  31. Nandi, P.K., Robinson, D.R.: Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry 23, 6661–6668 (1984)

    Article  CAS  Google Scholar 

  32. Nozaki, Y., Tanford, C.: The solubility of amino acids and related compounds in aqueous urea solutions. J. Biol. Chem. 238, 4074–4081 (1963)

    CAS  Google Scholar 

  33. Prasad, K.P., Ahluwalia, J.C.: Heat capacities of transfer of some amino acids and peptides from water to aqueous urea solution. Biopolymers 19, 273–284 (1980)

    Article  CAS  Google Scholar 

  34. Mishra, A.K., Prasad, K.P., Ahluwalia, J.C.: Apparent molar volumes of some amino acids and peptides in aqueous urea solutions. Biopolymers 22, 2397–2409 (1983)

    Article  CAS  Google Scholar 

  35. Lapanje, S., Skerjanc, J., Glavnik, S., Zibret, S.: Thermodynamic studies of the interactions of guanidinium chloride and urea with some oligoglycines and oligoleucines. J. Chem. Thermodyn. 10, 425–433 (1978)

    Article  CAS  Google Scholar 

  36. Enea, O., Jolicoeur, C.: Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25 °C. Some implications for protein unfolding. J. Phys. Chem. 86, 3870–3881 (1982)

    Article  CAS  Google Scholar 

  37. Stroth, L., Schdnert, H.: Excess enthalpies of water + diglycine or triglycine or glycyl-L-alanine + urea at 298.15 K. J. Chem. Thermodyn. 12, 653–660 (1980)

    Article  CAS  Google Scholar 

  38. Astrand, P.-O., Wallqvist, A., Karlstrom, G.: Molecular dynamics simulations of 2 M aqueous urea solutions. J. Phys. Chem. 98, 8224–8233 (1994)

    Article  Google Scholar 

  39. Tirado-Rives, J., Orozco, M., Jorgensen, W.L.: Molecular dynamics simulations of the unfolding of barnase in water and 8 m aqueous urea. Biochemistry 36, 7313–7329 (1997)

    Article  CAS  Google Scholar 

  40. Grdadolnik, J., Maréchal, Y.: Urea and urea–water solutions—an infrared study. J. Mol. Struct. 615, 177–189 (2002)

    Article  CAS  Google Scholar 

  41. Mountain, R.D., Thirumalai, D.: Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution. J. Am. Chem. Soc. 125, 1950–1957 (2003)

    Article  CAS  Google Scholar 

  42. Klimov, D.K., Straub, J.E., Thirumalai, D.: Aqueous urea solution destabilizes Aβ16–22 oligomers. Proc. Natl. Acad. Sci. USA 101, 14760–14765 (2004)

    Article  CAS  Google Scholar 

  43. Frank, H.S., Franks, F.: Structural approach to the solvent power of water for hydrocarbons; urea as a structure breaker. J. Chem. Phys. 48, 4746–4757 (1968)

    Article  CAS  Google Scholar 

  44. Finer, E.G., Franks, F., Tait, M.J.: Nuclear magnetic resonance studies of aqueous urea solutions. J. Am. Chem. Soc. 94, 4424–4429 (1972)

    Article  CAS  Google Scholar 

  45. Hoccart, X., Turrell, G.: Raman spectroscopic investigation of the dynamics of urea–water complexes. J. Chem. Phys. 99, 8498–8503 (1993)

    Article  CAS  Google Scholar 

  46. Stumpe, M.C., Grubmüller, H.: Interaction of urea with amino acids: Implications for urea-induced protein denaturation. J. Am. Chem. Soc. 129, 16126–16131 (2007)

    Article  CAS  Google Scholar 

  47. Kurhe, D.N., Dagade, D.H., Jadhav, J.P., Govindwar, S.P., Patil, K.J.: Studies of enthalpy-entropy compensation, partial entropies, and Kirkwood-Buff integrals for aqueous solutions of glycine, l-leucine, and glycylglycine at 298.15 K. J. Phys. Chem. B 113, 16612–16621 (2009)

    Article  CAS  Google Scholar 

  48. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  49. Patil, K., Pawar, R., Dagade, D.: Studies of osmotic and activity coefficients in aqueous and CCl4 solutions of 18-crown-6 at 25 °C. J. Phys. Chem. A 106, 9606–9611 (2002)

    Article  CAS  Google Scholar 

  50. Dagade, D.H.: Studies of thermodynamic and transport properties of 18-crown-6 in aqueous, nonaqueous and aqueous electrolytic solutions, Ph.D. thesis, Shivaji University, Kolhapur (2004)

  51. Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamic studies of molecular interactions in aqueous α-cyclodextrin solutions: application of McMillan-Mayer and Kirkwood-Buff theories. J. Phys. Chem. B 110, 18583–18593 (2006)

    Article  CAS  Google Scholar 

  52. Ellerton, H.D., Dunlop, P.J.: Activity coefficients for the systems water–urea and water–urea–sucrose at 25° from isopiestic measurements. J. Phys. Chem. 70, 1831–1837 (1966)

    Article  CAS  Google Scholar 

  53. Schrier, M.Y., Schrier, E.E.: Osmotic and activity coefficients of aqueous guanidine hydrochloride solutions at 25 °C. J. Chem. Eng. Data 22, 73–74 (1977)

    Article  CAS  Google Scholar 

  54. Macaskill, J.B., Robinson, R.A., Bates, R.G.: Osmotic coefficients and activity coefficients of guanidinium chloride in concentrated aqueous solutions at 25 °C. J. Chem. Eng. Data 22, 411–412 (1977)

    Article  CAS  Google Scholar 

  55. Wen, W.-Y., Chen, C.L.: Activity coefficients for two ternary systems: water–urea–tetramethylammonium bromide and water–urea–tetrabutylammonium bromide at 25°. J. Phys. Chem. 73, 2895–2901 (1969)

    Article  CAS  Google Scholar 

  56. Terdale, S.S., Dagade, D.H., Patil, K.J.: Activity and activity coefficient studies of aqueous binary and ternary solutions of 4-nitrophenol, sodium salt of 4-nitrophenol, hydroquinone and α-cyclodextrin at 298.15 K. J. Mol. Liq. 139, 61–71 (2008)

    Article  CAS  Google Scholar 

  57. Bower, V.E., Robinson, R.A.: The thermodynamics of the ternary system: urea–sodium chloride–water at 25°. J. Phys. Chem. 67, 1524–1527 (1963)

    Article  CAS  Google Scholar 

  58. Robinson, R.A., Stokes, R.H.: Activity coefficients of mannitol and potassium chloride in mixed aqueous solutions at 25°. J. Phys. Chem. 66, 506–507 (1962)

    Article  CAS  Google Scholar 

  59. Patil, K., Dagade, D.: Studies of activity coefficients for ternary systems: water + 18-crown-6 + alkali chlorides at 298.15 K. J. Solution Chem. 32, 951–966 (2003)

    Article  CAS  Google Scholar 

  60. Terdale, S., Dagade, D., Patil, K.: Activity coefficient studies in ternary aqueous solutions at 298.15 K: H2O + α-cyclodextrin + potassium acetate and H2O + 18-crown-6 + hydroquinone systems. J. Chem. Eng. Data 54, 294–300 (2009)

    Article  CAS  Google Scholar 

  61. Desnoyers, J.E., Billon, M., Leyer, S., Perron, G., Morel, J.-P.: Salting out of alcohols by alkali halides at the freezing temperature. J. Solution Chem. 5, 681–691 (1976)

    Article  CAS  Google Scholar 

  62. Samoilov, O.Y.: Structure of aqueous electrolyte solutions. Ives, D.J. (trans.). Consultants Bureau, New York (1965)

  63. Fetterly, L.C.: In: Mandel-Corn, L. (ed.) Non-Stoichiometric Compounds, pp. 491–567. Academic Press, New York (1964)

    Google Scholar 

  64. Whitney, P.L., Tanford, C.: Solubility of amino acids in aqueous urea solutions and its implications for the denaturation of proteins by urea. J. Biol. Chem. 237, PC1735–PC1737 (1962)

    CAS  Google Scholar 

  65. Meyer, M.L., Kauzmann, W.: The effects of detergents and urea on the rotatory dispersion of ovalbumin. Arch. Biochem. Biophys. 99, 348–349 (1962)

    Article  CAS  Google Scholar 

  66. Rosenberg, R.M., Rogers, D.W., Haebig, J.E., Steck, T.L.: The interaction of serum albumin with ethanol. Arch. Biochem. Biophys. 97, 433–441 (1962)

    Article  CAS  Google Scholar 

  67. Jirgensons, B.: Optical rotatory dispersion and conformation of various globular proteins. J. Biol. Chem. 238, 2716–2722 (1963)

    CAS  Google Scholar 

  68. Franks, F., Redley, M.D.: Solute-solute interactions in dilute aqueous solutions Part-IV: Microcalorimetric study of ternary mixtures of urea and hydrophobic species. J. Chem. Soc. Faraday Trans. I 77, 1341–1349 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesharsingh J. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurhe, D.N., Dagade, D.H., Jadhav, J.P. et al. Thermodynamic Studies of Amino Acid–Denaturant Interactions in Aqueous Solutions at 298.15 K. J Solution Chem 40, 1596–1617 (2011). https://doi.org/10.1007/s10953-011-9737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9737-8

Keywords

Navigation