Skip to main content
Log in

An Overview on Physico-Chemical Properties of Amino Acids upon Interactions with Solution Components: A Volumetric and Viscometric Approach

  • PROBLEMS, TENDENCIES IN DEVELOPMENT, AND CHALLENGES IN PHYSICAL CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this review article a typical investigation on the partial apparent molar volume \((V_{\varnothing }^{0})\), transfer volume \((\Delta V_{\varnothing }^{0})\), Hepler’s constant \({{({{\partial }^{2}}V_{\varnothing }^{0}{\text{/}}\partial {{T}^{2}})}_{{\text{P}}}}\), Jones–Dole coefficient (\({{B}_{{\text{J}}}}\)), and temperature derivative of \({{B}_{{\text{J}}}}\) or B-coefficients \((\partial {{B}_{{\text{J}}}}{\text{/}}\partial T)~\) of different amino acids in various solvents at different temperatures is carried out considering the significance and usefulness of these data in understanding the solvation and various other properties of proteins. The volumetric and viscometric parameters of amino acids have been surveyed owing to the addition of co-solute into its solutions. The interpretation on physicochemical properties is done with reference to various interactions like ion–ion, ion–solvent, solute–solvent interactions, etc. The ability of amino acids as structure maker or structure breaker in the attendance of a co-solute is also discussed. At a glance from a thoroughly reviewed literature data many important PCPs are analyzed and discussed in this article. For the binary and ternary liquid mixtures the PCPs at different temperatures were reviewed. Aiming to foster the advantage and application of PCPs of amino acids in aqueous and non-aqueous phases we present an overview of significant solution properties in terms of intrinsic and extrinsic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. Iulian and A. Stefaniu, J. Solution Chem. 42, 676 (2013). https://doi.org/10.1007/s10953-013-9976-y

    Article  CAS  Google Scholar 

  2. A. K. Nain, R. Pal, and P. Droliya, J. Chem. Thermodyn. 95, 77 (2016). https://doi.org/10.1016/j.jct.2015.11.015

    Article  CAS  Google Scholar 

  3. P. L. Privalov, Adv. Protein Chem. 33, 167 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. S. Lapanje, Physicochemical Aspects of Protein Denaturation (Wiley, New York, 1978).

    Google Scholar 

  5. J. Ilić-Pajić, I. Radović, N. Grozdanić, J. Stajić-Trošić, and M. Kijevčanin, J. Mol. Liq. 344, 117486 (2021). https://doi.org/10.1016/j.molliq.2021.117486

  6. G. Guevara-Carrion, R. Fingerhut, and J. Vrabec, J. Chem. Eng. Data 66, 2425 (2021). https://doi.org/10.1021/acs.jced.1c00070

    Article  CAS  Google Scholar 

  7. P. Wu, L. Zhang, S. Zhao, C. Wang, Y. Guo, and W. Fang, J. Chem. Eng. Data 66, 2706 (2021). https://doi.org/10.1021/acs.jced.1c00057

    Article  CAS  Google Scholar 

  8. N. A. S. Ramli and F. Abdullah J. Chem. Eng. Data 66, 1856 (2021). https://doi.org/10.1021/acs.jced.0c00694

    Article  CAS  Google Scholar 

  9. M. R. Ali and N. A. F. A. Samad, Phys. Chem. Liq. 59, 537 (2021). https://doi.org/10.1080/00319104.2020.1752690

    Article  CAS  Google Scholar 

  10. X. Qin, Y. Chen, S. Yang, X. Qin, J. Zhao, and W. Fang, J. Chem. Eng. Data 65, 2512 (2020). https://doi.org/10.1021/acs.jced.9b01167

    Article  CAS  Google Scholar 

  11. X. Zhao, J. Mi, Y. Dai, G. He, Y. Guo, and W. Fang, J. Chem. Eng. Data 65, 2527 (2020). https://doi.org/10.1021/acs.jced.9b01171

    Article  CAS  Google Scholar 

  12. A. Nazemieh, W. E. Acree, Jr., and A. Jouyban, J. Mol. Liq. 350, 118211 (2022). https://doi.org/10.1016/j.molliq.2021.118211

  13. A. Jouyban and W. E. Acree, Jr., J. Mol. Liq. 323, 115054 (2021). https://doi.org/10.1016/j.molliq.2020.115054

  14. N. E. Podolsky et al., J. Mol. Liq. 278, 342 (2019). https://doi.org/10.1016/j.molliq.2018.12.148

    Article  CAS  Google Scholar 

  15. P. Jafari, W. E. Acree, Jr., and A. Jouyban, J. Mol. Liq. 338, 116776 (2021). https://doi.org/10.1016/j.molliq.2021.116776

  16. Y. Zheng, Y. Zheng, Q. Wang, and Z. Wang, J. Chem. Eng. Data 66, 480 (2020). https://doi.org/10.1021/acs.jced.0c00754

    Article  CAS  Google Scholar 

  17. Y. Zhao, Y. Chen, M. Fang, H. Zhang, and K. Zhuo, J. Chem. Thermodyn. 130, 198 (2019). https://doi.org/10.1016/j.jct.2018.09.036

    Article  CAS  Google Scholar 

  18. M. Paez, S. Figueredo, D. Perez, M. Vergara, and E. Lans, J. Mol. Liq. 266, 718 (2018). https://doi.org/10.1016/j.molliq.2018.06.122

    Article  CAS  Google Scholar 

  19. G. Savaroglu and A. C. Ildaser, Thermochim. Acta 582, 86 (2014). https://doi.org/10.1016/j.tca.2014.03.004

    Article  CAS  Google Scholar 

  20. A. Bandral, A. Kumar, et al., J. Mol. Liq. 348, 118081 (2022). https://doi.org/10.1016/j.molliq.2021.118081

  21. R. Gaba, J. Malhotra, A. Pal, D. Sharma, and H. Kumar, J. Mol. Liq. 322, 114971 (2021). https://doi.org/10.1016/j.molliq.2020.114971

  22. H. Kumar, G. Singh, R. Kataria, and S. K. Sharma, J. Mol. Liq. 303, 112592 (2020). https://doi.org/10.1016/j.molliq.2020.112592

  23. A. Ali, S. Khan, S. Hyder, and M. Tariq, J. Chem. Thermodyn. 39, 613 (2007). https://doi.org/10.1016/j.jct.2006.08.010

    Article  CAS  Google Scholar 

  24. H. Kumar and I. Behal, J. Chem. Eng. Data 62, 3138 (2017). https://doi.org/10.1021/acs.jced.7b00257

    Article  CAS  Google Scholar 

  25. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 361, 119578 (2022). https://doi.org/10.1016/j.molliq.2022.119578

  26. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 352, 118659 (2022). https://doi.org/10.1016/j.molliq.2022.118659

  27. A. Ali, P. Bidhuri, N. A. Malik, and S. Uzair, Arab. J. Chem. 12, 1684 (2019). https://doi.org/10.1016/j.arabjc.2014.08.027

    Article  CAS  Google Scholar 

  28. A. Kumar et al., J. Chem. Thermodyn. 150, 106228 (2020). https://doi.org/10.1016/j.jct.2020.106228

  29. S. Chauhan, L. Pathania, K. Sharma, and G. Kumar, J. Mol. Liq. 212, 656 (2015). https://doi.org/10.1016/j.molliq.2015.09.042

    Article  CAS  Google Scholar 

  30. S. Shirvali, H. Iloukhani, and K. Khanlarzadeh, J. Mol. Liq. 295, 111651 (2019). https://doi.org/10.1016/j.molliq.2019.111651

  31. S. Chauhan and K. Kumar, J. Mol. Liq. 194, 212 (2014). https://doi.org/10.1016/j.molliq.2014.03.004

    Article  CAS  Google Scholar 

  32. M. Brinzei and O. Ciocirlan, J. Chem. Thermodyn. 154, 106335 (2021). https://doi.org/10.1016/j.jct.2020.106335

  33. H. Kumar, V. Kumar, S. Sharma, A. Katal, and A. A. Alothman, J. Chem. Thermodyn. 155, 106350 (2021). https://doi.org/10.1016/j.jct.2020.106350

  34. H. Kumar and R. Sharma, J. Mol. Liq. 304, 112666 (2020). https://doi.org/10.1016/j.molliq.2020.112666

  35. R. Rani, A. Kumar, T. Sharma, T. Sharma, and R. K. Bamezai, J. Chem. Thermodyn. 135, 260 (2019). https://doi.org/10.1016/j.jct.2019.03.039

    Article  CAS  Google Scholar 

  36. H. Kumar and R. Sharma, J. Chem. Thermodyn. 152, 106268 (2021). https://doi.org/10.1016/j.jct.2020.106268

  37. A. Kumar, R. Rani, B. Saini, and R. K. Bamezai, J. Mol. Liq. 241, 237 (2017). https://doi.org/10.1016/j.molliq.2017.06.004

    Article  CAS  Google Scholar 

  38. A. Kumar, R. Rani, T. Sharma, and R. K. Bamezai, J. Mol. Liq. 276, 961 (2019). https://doi.org/10.1016/j.molliq.2018.12.113

    Article  CAS  Google Scholar 

  39. H. Kaur, R. C. Thakur, H. Kumar, and A. Katal, J. Chem. Thermodyn. 158, 106433 (2021). https://doi.org/10.1016/j.jct.2021.106433

  40. J. Gupta and A. K. Nain, J. Chem. Thermodyn. 144, 106067 (2020). https://doi.org/10.1016/j.jct.2020.106067

  41. N. Devunuri, S. Kancherla, B. K. Chennuri, and R. L. Gardas, J. Mol. Liq. 216, 347 (2016). https://doi.org/10.1016/j.molliq.2016.01.058

    Article  CAS  Google Scholar 

  42. D. Kumar, S. K. Lomesh, and V. Nathan, J. Mol. Liq. 247, 75 (2017). https://doi.org/10.1016/j.molliq.2017.08.057

    Article  CAS  Google Scholar 

  43. A. K. Nain and M. Lather, J. Mol. Liq. 211, 178 (2015). https://doi.org/10.1016/j.molliq.2015.07.018

    Article  CAS  Google Scholar 

  44. A. D. Arsule, R. T. Sawale, T. M. Kalyankar, and S. D. Deosarkar, J. Solution Chem. 49, 83 (2020). https://link.springer.com/article/10.1007/s10953-019-00945-4

    Article  CAS  Google Scholar 

  45. K. Rajagopal, M. M. Roshan, S. Shailajha, and G. R. R. Renold, J. Chem. Thermodyn. 133, 312 (2019). https://doi.org/10.1016/j.jct.2019.02.012

    Article  CAS  Google Scholar 

  46. M. Singla, H. Kumar, and R. Jindal, J. Chem. Thermodyn. 76, 100 (2014). https://doi.org/10.1016/j.jct.2014.03.015

    Article  CAS  Google Scholar 

  47. Z. Yan, X. Sun, W. Li, Y. Li, and J. Wang, J. Chem. Thermodyn. 43, 1468 (2011). https://doi.org/10.1016/j.jct.2011.04.020

    Article  CAS  Google Scholar 

  48. S. K. Lomesh, V. Nathan, M. Bala, and P. Thakur, J. Mol. Liq. 284, 241 (2019). https://doi.org/10.1016/j.molliq.2019.04.006

    Article  CAS  Google Scholar 

  49. S. D. Deosarkar, A. D. Arsule, R. T. Sawale, and V. G. Pingle, J. Mol. Liq. 323, 114925 (2021). https://doi.org/10.1016/j.molliq.2020.114925

  50. V. S. Shende, U. R. Pratap, A. V. Wankhade, and S. P. Zodape, J. Mol. Liq. 337, 116580 (2021). https://doi.org/10.1016/j.molliq.2021.116580

  51. S. K. Dey, M. T. Rahman, M. A. Islam, S. K. Dutta, M. S. Hossain, and P. K. Dhar, Lett. Appl. Nanobiosci. 9, 1547 (2020). https://doi.org/10.33263/LIANBS94.15471561

    Article  Google Scholar 

  52. F. Salimi and F. Frouzesh, J. Chem. Thermodyn. 126, 22 (2018). https://doi.org/10.1016/j.jct.2018.06.008

    Article  CAS  Google Scholar 

  53. M. Kumar, N. Sawhney, A. K. Sharma, and M. Sharma, J. Mol. Liq. 243, 41 (2017). https://doi.org/10.1016/j.molliq.2017.08.001

    Article  CAS  Google Scholar 

  54. X. Wang et al., J. Chem. Thermodyn. 78, 128 (2014). https://doi.org/10.1016/j.jct.2014.06.016

    Article  CAS  Google Scholar 

  55. N. Sawhney, M. Kumar, A. K. Sharma, and M. Sharma, J. Chem. Thermodyn. 123, 22 (2018). https://doi.org/10.1016/j.jct.2018.03.022

    Article  CAS  Google Scholar 

  56. D. V Kawadkar and S. P. Zodape, J. Chem. Eng. Data 64, 421 (2018). https://doi.org/10.1021/acs.jced.8b00349

    Article  CAS  Google Scholar 

  57. A. Pal and S. Soni, J. Chem. Eng. Data 58, 18 (2013). https://doi.org/10.1021/je300455e

    Article  CAS  Google Scholar 

  58. K. Rajagopal and S. S. Jayabalakrishnan, Chin. J. Chem. Eng. 18, 425 (2010). https://doi.org/10.1016/S1004-9541(10)60241-8

    Article  CAS  Google Scholar 

  59. M. Brinzei, A. Stefaniu, O. Iulian, and O. Ciocirlan, J. Mol. Liq. 341, 116912 (2021). https://doi.org/10.1016/j.molliq.2021.116912

  60. S. Sharma, S. Sharma, J. Singh, M. Singh, A. K. Sharma, and M. Sharma, J. Chem. Thermodyn. 167, 106696 (2022). https://doi.org/10.1016/j.jct.2021.106696

Download references

ACKNOWLEDGMENTS

We express our heartfelt gratitude to Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha for the research facilities extended to us.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

RKP: Conceptualization, methodology, design, formal analysis and interpretation of the available data. MT: Visualisation, editing, writing and review. SS: Conceptualization, methodology, validation, writing original draft or revising it critically for important intellectual content, supervision, approval of the final version.

Corresponding author

Correspondence to Sulochana Singh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rupesh Kumar Pradhan, Talukdar, M. & Singh, S. An Overview on Physico-Chemical Properties of Amino Acids upon Interactions with Solution Components: A Volumetric and Viscometric Approach. Russ. J. Phys. Chem. 97, 2631–2649 (2023). https://doi.org/10.1134/S0036024423120257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120257

Keywords:

Navigation