Skip to main content
Log in

Fluorescence Quenching Studies of the Interaction Between Riboflavin and Norfloxacin and Analytical Application in the Determination of Vitamin B2

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The binding of riboflavin (RBF) to norfloxacin (NF) was investigated by spectroscopic techniques. The results revealed that RBF caused the fluorescence quenching of NF by complex formation. The binding parameters and corresponding thermodynamic parameters ΔH, ΔG and ΔS at different temperatures were calculated. The negative enthalpy (ΔH) and positive entropy (ΔS) values indicated that both hydrogen bond and hydrophobic forces played major roles in the binding of RBF to NF. The distance r between donor (NF) and acceptor (RBF) was obtained according to the Forster’s theory of non-radiative energy transfer. The method of quenching was successfully applied for the determination of riboflavin from pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Plenum, New York (2006)

    Google Scholar 

  2. Rohatgi-Mukherjee, K.K.: Fundamentals of Photochemistry. New Age International, New Delhi (2006)

    Google Scholar 

  3. Arkin, M.R., Stemp, E.D.A., Turro, C., Turro, N.J., Barton, J.K.: Luminescence quenching in supramolecular systems: a comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. J. Am. Chem. Soc. 118, 2267–2274 (1996)

    Article  CAS  Google Scholar 

  4. Hink, M.A., Visser, N.V., Borst, J.W., Hoek, A., Visser, A.J.W.G.: Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster resonance energy transfer (FRET). J. Fluores. 13, 185–188 (2003)

    Article  CAS  Google Scholar 

  5. Tommaso, R.I.C., Donatella, N., Laura, S., Antonio, S.: Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection. J. Agric. Food Chem. 50, 6643–6647 (2002)

    Article  Google Scholar 

  6. Cristina, A.L., Fulvio, M., Deigo, T.: Determination of riboflavin, flavin mononucleotide and flavin-adenine dinucleotide in wine and other beverages by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 823, 355–363 (1998)

    Google Scholar 

  7. Tang, X., Cronin, D.A., Brunton, N.P.: A simplified approach to the determination of thiamine and riboflavin in meats using reverse phase HPLC. J. Food Compos. Anal. 19, 831–837 (2006)

    Article  CAS  Google Scholar 

  8. Hu, Li., Yang, X., Wang, C., Yuan, H., Xiao, D.: Determination of riboflavin in urine and beverages by capillary electrophoresis with in-column optical fiber laser-induced fluorescence detection. J. Chromatogr. B 856, 245–251 (2007)

    CAS  Google Scholar 

  9. Tommaso, R.I.C., Donatella, N., Giuseppe, E.D.B., Sabino, A.B.: Optimizing separation conditions for riboflavin, flavin mononucleotide and flavin adenine dinucleotide in capillary zone electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A 968, 229–239 (2002)

    Google Scholar 

  10. He, W., Li, Y., Xue, C., Hu, Z., Chen, X., Sheng, F.: Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg. Med. Chem. 13, 1837–1845 (2005)

    Article  CAS  Google Scholar 

  11. Hu, Y.J., Liu, Y., Zhang, L.X., Zhao, R.M.: Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J. Mol. Struct. 750, 174–178 (2005)

    Article  CAS  Google Scholar 

  12. Dewey, T.G.: Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. Plenum, New York (1991)

    Google Scholar 

  13. Li, D., Zhu, J., Jin, J.: Spectrophotometric studies on the interaction between nevadensin and lysozyme. J. Photochem. Photobiol. A, Chem. 189, 114–120 (2007)

    Article  CAS  Google Scholar 

  14. Wang, Y.Q., Zhang, H.M., Zhang, G.C., Tao, W.H., Tang, S.H.: Binding of brucine to human serum albumin. J. Mol. Struct. 830, 40–45 (2007)

    Article  CAS  Google Scholar 

  15. Chen, G.Z., Huang, X.Z., Xu, J.G., Zheng, Z.Z., Wang, Z.B.: The Methods of Fluorescence Analysis, 2nd edn. Science, Beijing (1990)

    Google Scholar 

  16. Kandagal, P.B., Seetharamappa, J., Shaikh, S.M.T., Manjunatha, D.H.: Binding of trazodone hydrochloride with human serum albumin: A spectroscopic study. J. Photochem. Photobiol. A, Chem. 185, 239–244 (2007)

    Article  CAS  Google Scholar 

  17. Sharma, A., Schulman, S.G.: Introduction of Fluorescence Spectroscopy. Wiley, New York (1999)

    Google Scholar 

  18. Wang, Y.Q., Zhang, H.M., Zhang, G.C., Tao, W.H., Tang, S.H.: Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study. J. Lumin. 126, 211–218 (2007)

    Article  CAS  Google Scholar 

  19. Xie, M.X., Xu, X.Y., Wang, Y.D.: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim. Biophys. Acta 1724, 215–224 (2005)

    CAS  Google Scholar 

  20. Hu, Y.J., Liu, Y., Wang, J.B., Xiao, X.H., Qu, S.S.: Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36, 915–919 (2004)

    Article  CAS  Google Scholar 

  21. Chatterjee, S., Nandi, S., Bhattacharya, S.C.: Fluorescence resonance energy transfer from fluorescein to safranine T in solutions and in micellar medium. J. Photochem. Photobiol. A, Chem. 173, 221–227 (2005)

    Article  CAS  Google Scholar 

  22. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  23. Rahman, M.H., Maruyama, T., Okada, T., Yamasaki, K., Otagiri, M.: Study of interaction of caprofen and its enantiomers with human serum albumin-I-mechanism of binding. Biochem. Pharmacol. 46, 1721–1731 (1993)

    Article  CAS  Google Scholar 

  24. Hu, Y.J., Liu, Y., Zhao, R.M., Dong, J.X., Qu, S.S.: Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J. Photochem. Photobiol. A, Chem. 179, 324–329 (2006)

    Article  CAS  Google Scholar 

  25. Mote, U.S., Bhattar, S.L., Patil, S.R., Kolekar, G.B.: Interaction of fluorescein with felodipine: a spectrofluorometric and thermodynamic study. J. Solution Chem. 38, 619–628 (2009)

    Article  CAS  Google Scholar 

  26. Cui, F.L., Fan, J., Li, J.P., Hu, Z.: Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg. Med. Chem. 12, 151–157 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind B. Kolekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

More, V.R., Mote, U.S., Patil, S.R. et al. Fluorescence Quenching Studies of the Interaction Between Riboflavin and Norfloxacin and Analytical Application in the Determination of Vitamin B2 . J Solution Chem 39, 97–106 (2010). https://doi.org/10.1007/s10953-009-9490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9490-4

Navigation