Skip to main content
Log in

D2O Isotope Effects on the Ionization of β-Naphthol and Boric Acid at Temperatures from 225 to 300 °C using UV-Visible Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The deuterium-isotope effects on the ionization constants of β-naphthol (2-naphthol) and boric acid, Δlog 10 K=[log 10 K D2O−log 10 K H2O], have been determined from measurements in light and heavy water at temperatures from 225 °C≤t≤300 °C and pressures near steam saturation. β-Naphthol is a thermally-stable colorimetric pH indicator, whose ionization constant lies close to that of H2PO 4 (aq), the only acid for which Δlog 10 K is accurately known at elevated temperatures. A newly designed platinum flow cell was used to measure UV-visible spectra of β-naphthol in acid, base, and buffer solutions of H2PO 4 /HPO 2−4 and D2PO 4 /DPO 2−4 , from which the degree of ionization at known values of pH and pD was determined. Values of the ionization constants of β-naphthol in light and heavy water were calculated from these results, and used to derive a model for \(\log_{10}K_{\mathrm{H}_{2}\mathrm{O}}\) and \(\log_{10}K_{\mathrm{D}_{2}\mathrm{O}}\) over the experimental temperature range with an estimated precision of ±0.02 in log 10 K. The new values of K H2O and K D2O allowed us to use β-naphthol as a colorimetric indicator, to measure the equilibrium pH and pD of the buffer solutions B(OH)3/B(OH) 4 and B(OD)3/B(OD) 4 up to 300 °C, from which the ionization constants of boric acid were calculated. The magnitude of the deuterium isotope effect for H2PO 4 (aq) is known to fall from Δlog 10 K=−0.62 to Δlog 10 K=−0.47, on the “aquamolal” concentration scale, as the temperature rises above 125 °C, but then remains almost constant. Although the temperature range is more limited, the new results for β-naphthol and boric acid appear to show a similar trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, R.: Medium effects and pH in non-aqueous solvents. In: Coetzee, J.F., Ritchie, C.D. (eds.) Solute-Solvent Interactions. Marcel Dekker, New York (1969), Chap. 4

    Google Scholar 

  2. Laughton, P.M., Robertson, R.E.: Solvent isotope effects for equilibria and reactions. In: Coetzee, J.F., Ritchie, C.D. (eds.) Solute-Solvent Interactions. Marcel Dekker, New York (1969), Chap. 7

    Google Scholar 

  3. Arnett, E.M., McKelvey, D.R.: Solvent isotope effect on thermodynamics of non-reacting solutes. In: Coetzee, J.F., Ritchie, C.D. (eds.) Solute-Solvent Interactions. Marcel Dekker, New York (1969), Chap. 6

    Google Scholar 

  4. Jancso, G., Van Hook, W.A.: Condensed phase isotope effects (especially vapor pressure isotope effects). Chem. Rev. 74, 689–750 (1974). doi:10.1021/cr60292a004

    Article  CAS  Google Scholar 

  5. Shoesmith, D.W., Lee, W.: The ionization constant of heavy water (D2O) in the temperature range 298 to 523 K. Can. J. Chem. 54, 3553–3558 (1976). doi:10.1139/v76-511

    Article  CAS  Google Scholar 

  6. Mesmer, R.E., Herting, D.L.: Thermodynamics of ionization of D2O and D2PO 4 . J. Solution Chem. 7, 901–913 (1978). doi:10.1007/BF00645300

    Article  CAS  Google Scholar 

  7. Xiang, T., Johnston, K.P.: Acid-base behavior of organic compounds in supercritical water. J. Phys. Chem. 98, 7915–7922 (1994). doi:10.1021/j100083a027

    Article  CAS  Google Scholar 

  8. Clarke, R.G.F., Collins, C.M., Roberts, J.C., Trevani, L.N., Bartholomew, R.J., Tremaine, P.R.: Ionization constants of aqueous amino acids at temperatures up to 250 °C using hydrothermal pH indicators and UV-visible spectroscopy: glycine, α-alanine and proline. Geochim. Cosmochim. Acta 69, 3029–3043 (2005). doi:10.1016/j.gca.2004.11.028

    Article  CAS  Google Scholar 

  9. Bulemela, E., Trevani, L.N., Tremaine, P.R.: Ionization constants of aqueous glycolic acid at temperatures up to 250 °C using hydrothermal pH indicators and UV-visible spectroscopy. J. Solution Chem. 34, 769–788 (2005). doi:10.1007/s10953-005-5113-x

    Article  CAS  Google Scholar 

  10. Ehlerova, J., Trevani, L.N., Sedlbauer, J., Tremaine, P.R.: Spectrophotometric determination of the ionization constants of aqueous nitrophenols at temperatures up to 225 °C. J. Solution Chem. 37, 854–857 (2008). doi:10.1007/s10953-008-9279-x

    Article  CAS  Google Scholar 

  11. Wehry, E.L., Rogers, L.B.: Deuterium isotope effects on the protolytic dissociation of organic acids in electronically excited states. J. Am. Chem. Soc. 88, 351–354 (1966). doi:10.1021/ja00954a031

    Article  CAS  Google Scholar 

  12. Trevani, L.N., Roberts, J.C., Tremaine, P.R.: Copper(II)-ammonia complexation equilibria in aqueous solutions from 30 to 250 °C by visible spectroscopy. J. Solution Chem. 30, 585–622 (2001). doi:10.1023/A:1010453412802

    Article  CAS  Google Scholar 

  13. Bulemela, E.: Hydration and functional group effects of organic solutes in water at high temperatures and pressures. PhD thesis, University of Guelph (2006)

  14. Mendham, J., Denney, R.C., Barnes, J.D., Thomas, M.: Vogel’s Textbook of Quantitative Chemical Analysis, 6th edn. Prentice Hall, Harlow (2000)

    Google Scholar 

  15. Trevani, L.N., Balodis, E., Tremaine, P.R.: Apparent and standard partial molar volumes of NaCl, NaOH, and HCl in water and heavy water at 523 K and 573 K at p=14 MPa. J. Phys. Chem. B 111, 2015–2024 (2007). doi:10.1021/jp063824x

    Article  CAS  Google Scholar 

  16. Pitzer, K.S.: Thermodynamics. McGraw Hill, New York (1995)

    Google Scholar 

  17. Uematsu, M., Franck, E.U.: Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 9, 1291–1306 (1980)

    Article  CAS  Google Scholar 

  18. Mesmer, R.E., Baes, C.F. Jr.: Phosphoric acid dissociation equilibria in aqueous solutions to 300 °C. J. Solution Chem. 4, 307–322 (1974) doi:10.1007/BF00648228

    Article  Google Scholar 

  19. Mesmer, R.E., Baes, C.F. Jr., Sweeton, F.H.: Acidity measurements at elevated temperatures, VI: boric acid equilibria. Inorg. Chem. 11, 537–543 (1972) doi:10.1021/ic50109a023

    Article  CAS  Google Scholar 

  20. Palmer, D.A., Bénézeth, P., Wesolowski, D.J.: Boric acid hydrolysis: a new look at the available data. PowerPlant Chem. 2, 261–264 (2000)

    CAS  Google Scholar 

  21. Albert, A., Serjeant, E.P.: Ionization Constants of Acids and Bases. Methuen, London (1969)

    Google Scholar 

  22. Edwards, J.O., Ibne-Rasa, K.M., Choi, E.I., Rice, C.L.: Kinetic deuterium isotope effect in the nitrosation of aniline. The deuterium isotope effect on three equilibrium constants. J. Phys. Chem. 66, 1212–1213 (1962) doi:10.1021/j100812a522

    Article  CAS  Google Scholar 

  23. Gold, V., Lowe, B.M.: Measurement of solvent isotope effects with the glass electrode, part II: the dissociation constant of acetic acid and boric acid in D2O and D2O-H2O mixtures, J. Chem. Soc. A 1923–1932 (1968). doi:10.1039/j19680001923

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Tremaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulemela, E., Tremaine, P.R. D2O Isotope Effects on the Ionization of β-Naphthol and Boric Acid at Temperatures from 225 to 300 °C using UV-Visible Spectroscopy. J Solution Chem 38, 805–826 (2009). https://doi.org/10.1007/s10953-009-9411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9411-6

Keywords

Navigation