Skip to main content
Log in

Extraction of Chemical Speciation and Molar Absorption Coefficients with Well-Posed Solutions of Beer's Law

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The performance of different types of solutions of Beer's law was evaluated on a suite of synthetic uv-vis spectra generated at various degrees of random error. Solutions making use of absorbance matrices filtered from random noise were the most successful at retrieving the properties of chemical species at larger errors. Repeated automated simulations, however, indicated that such solutions display a number of occurrences associated with poor fits to the synthetic data. Solutions to Beer's law starting from the raw absorbance matrices including random errors produced more consistent sets of values of rather poorer quality. A bootstrap statistical analysis of the repeated simulations showed the median quality of the fit (e.g., sum-of-squares of the deviations) nonetheless to be far superior for solutions making use of error/noise filtration. These resulting absorbance matrices when reduced dimensionality, moreover, gave better values of the molar absorption coefficients and formation constant if solved numerically using orthogonal-triangular (QR) factorizations. These solutions are therefore recommended for the extraction of spectroscopic and thermodynamic/kinetic properties of chemical species from spectroscopic data, however, not without a rigorous validation of the model. All the solutions to Beer's law are provided in the computational language of Matlab 7.0 and may be readily implemented for any quantitative spectroscopic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malinowski, E.R.: Factor Analysis in Chemistry 3rd ed.. John Wiley & Sons (2002)

  2. Meinrath, G., Lis, S.: Quantitative resolution of spectroscopic systems using computer-assisted target factor analysis (CAT). Fres. J. Anal. Chem. 369, 124–133 (2001)

    Article  CAS  Google Scholar 

  3. Knorr, F.cJ., Harris, J.M.: Resolution of multicomponent fluorescence spectra by an emission wavelength-decay time data matrix. Anal. Chem. 53, 272–276 (1981)

    Article  CAS  Google Scholar 

  4. Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)

    Article  CAS  Google Scholar 

  5. Tam, K.Y., Quéré, L.: Multiwavelength spectrophotometric resolution of the micro-equilibria of cetirizine. Anal. Sci. 17, 1203–1208 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Rouhollahi, A., Kiaie, F.M., Ghasemi, J.: Multiwavelength spectrophotometric determination of protolytic constants of 4-(2-pyridylazo) resorcinol (PAR) in binary DMF-water mixtures. Talanta 66, 653–658 (2005)

    Article  CAS  Google Scholar 

  7. Gampp, H., Maeder, M., Meyer, C.J., Zuberbühler, A.D.: Calculation of equilibrium constants from multiwavelength spectroscopic data-III. Talanta 32, 1133–1139 (1985)

    Article  CAS  Google Scholar 

  8. Uekawa, E., Murase, K., Matsubara, E., Hirato, T., Awakura, Y.: Determination of chemical species and their composition in Ni-Mo alloy plating baths by factor analysis of visible absorption spectra. J. Electrochem. Soc. 145, 523–528 (????)

    Article  Google Scholar 

  9. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Halsted (1976)

  10. Suleimenov, O.M., Seward, T.M.: Spectrophotometric measurements of metal complex formation at high temperatures: the stability of Mn(II) chloride species. Chem. Geol. 167, 177–192 (2000)

    Article  CAS  Google Scholar 

  11. Hansen, P.C.: Analysis of discrete Ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  Google Scholar 

  12. McCarthy, P.J.: Direct analytic model of the L-curve for Tikhonov regularization parameter selection. Inverse Problems 19, 643–663 (2003)

    Article  Google Scholar 

  13. Johnston, P.R., Gulrajani, R.M.: TITLE??. IEEE Trans. Biomed Eng. 47, 1293–???? (2000)

    Article  PubMed  CAS  Google Scholar 

  14. Brugger, J., McPhail, D.C., Black, J., Spiccia, L.: Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)-LiCl-H2O system between 25 and 90 °C. Geochim. Cosmochim. Acta 65, 2961–2708 (2001)

    Article  Google Scholar 

  15. Jackson, J.E.: A User's Guide to Principal Components. John Wiley and Sons, Inc., p. 591 (1991)

  16. Golub, G.H., Reinsch, C.: Singular value decomposition and lest squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  Google Scholar 

  17. Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chim. 49, 612–617 (1977)

    Article  CAS  Google Scholar 

  18. Meloun, M., Čapek, J., Mikšik, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta 423, 51–68 (2000)

    Article  CAS  Google Scholar 

  19. Boily, J.-F., Seward, T.M.: Palladium(II) chloride complexation: spectrophotometric investigation in aqueous solutions from 5 to 125 °C and theoretical insight into Pd-Cl and Pd-OH2 interactions. Geochim. Cosmochim. Acta 69, 3773–3789 (2005)

    Article  CAS  Google Scholar 

  20. Boily, J.-F., Seward, T.M.: On the dissociation of methyl orange: spectrophotometric investigation in aqueous solutions from 10 to 90 °C and theoretical evidence for intramolecular dihydrogen bonding. J. Solution Chem. In press (2005)

  21. Boily, J.-F., Seward, T.M.: Dissociation of fumaric acid: spectrophotometric investigation in aqueous solutions from 10 to 90 °C and theoretical considerations. J. Solution Chem. 34, 1167–1190 (2005)

    Article  CAS  Google Scholar 

  22. Hug, S.J., Sulzberger, B.: In situ fourier-transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10, 3587–3597 (1994)

    Article  CAS  Google Scholar 

  23. Bulemela, E., Trevani, L., Tremaine, P.R.: Ionization constants of aqueous glycolic acid at temperatures up to 250 °C using hydrothermal pH indicators and UV-visible spectroscopy. J. Solution Chem. 34, 769–788 (2005)

    Article  CAS  Google Scholar 

  24. Uchida, M., Okuwaki, A.: UV-Vis spectrophotometric determination of the dissociation constants for monochlorophenols in aqueous solution at elevated temperatures. J. Solution Chem. 32, 19–39 (2003)

    Article  CAS  Google Scholar 

  25. Gharib, F., Fekri, M.H.: Interaction of dioxovanadium(V) with alanine, alanylalanine, and alanylglycine. J. Solution Chem. 32, 855–863 (2003).

    Article  CAS  Google Scholar 

  26. Migdisov, A.A., Williams-Jones, A.E.: A Spectrophotometric study of neodymium(III) complexation in chloride solutions. Geochim. Cosmochim. Acta 66, 4311–4323 (2002)

    Article  CAS  Google Scholar 

  27. Müller, B., Seward, T.M.: Spectrophotometric determination of the stability of tin(II) chloride complexes in aqueous solution up to 300°C. Geochim. Cosmochim. Acta 65, 4187–4199 (2001)

    Article  Google Scholar 

  28. Trevani, L.N., Roberts, J.C., Tremaine, P.R.: Copper(II)-Ammonia complexation equilibria in aqueous solutions at temperatures from 30 to 250 °C by visible spectroscopy. J. Solution Chem. 30, 585–622 (2001)

    Article  CAS  Google Scholar 

  29. Yusov, A.B., Fedosseev, A.M., Delegard, C.H.: Hydrolysis of Np(IV) and Pu(IV) and their complexation by aqueous Si(OH)4. Radiochim. Acta 92, 869–881 (2004)

    Article  CAS  Google Scholar 

  30. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User's Guide (http://www.netlib.org/lapack/lug/ lapack\_lug.html), Third Edition, SIAM, Philadelphia, 1999.

    Google Scholar 

  31. Meinrath, G., Lis, S.: Application of cause-and-effect diagrams to the interpretation of UV-Vis spectroscopic data. Anal. Bioanal. Chem. 372, 333–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Marquardt, D.W.: An algorithm for least-square estimates of nonlinear parameters. SIAM J. Opt. 11, 431–441 (1963)

    Google Scholar 

  33. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Boily.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boily, JF., Suleimenov, O.M. Extraction of Chemical Speciation and Molar Absorption Coefficients with Well-Posed Solutions of Beer's Law. J Solution Chem 35, 917–926 (2006). https://doi.org/10.1007/s10953-006-9035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9035-z

Keywords

Navigation