Skip to main content
Log in

Experimental Evidences for Quantum Spin Liquid Ground State in Layered Hexagonal Y2CuTiO6

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Quantum spin liquid ground state has been observed in Y2CuTiO6. The compound was prepared using solid-state synthesis method. Y2CuTiO6 crystallized in non-perovskite hexagonal structure with space group, P63cm (#185). Ti4+ and Cu2+ ions are distributed randomly in the B site along the ab-plane with trigonal bipyramidal coordination of oxygen ions and separated along the c-axis by Y-O7 layers. Ambient-temperature Raman spectra revealed vibrational modes corresponding to hexagonal structure. The Raman spectrum displayed multiple low-intensity, broad peaks that could have resulted as a consequence of charge and geometrical disorders between Cu2+ and Ti4+ ions on the triangular lattice. Room-temperature photoelectron spectroscopy has been performed to determine the oxidation states of the respective ions present in the titled compound. Temperature-dependent magnetic molar susceptibility plots under zero field cooled and field cooled modes are superimposed on each other without any anomalies implying the absence of long-range magnetic ordering down to 2 K. Curie-Weiss fitting of high-temperature magnetization data nevertheless estimated a significantly high temperature of − 116 K which denotes antiferromagnetic interactions. Temperature-dependent heat capacity data measured in 0.100 K < T < 280 K in zero magnetic field and 0.1 K < T < 60 K for various fields complemented the magnetization studies. The magneto-thermal response of this material at low temperatures shows scaling behaviour consistent with random singlet formation on Cu2+ sites down to 100 mK. Absence of long-range magnetic order in the magnetic susceptibility or in the specific heat measurements of Y2CuTiO6 suggests the quantum spin liquid ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balents, L.: Spin liquids in frustrated magnets. Nature 464, 199–208 (2010)

    Article  ADS  Google Scholar 

  2. Isono, T., Sugiura, S., Terashima, T., Miyagawa, K., Kanoda, K., Uji, S.: Spin-lattice decoupling in a triangular-lattice quantum spin liquid. Nat. Commun. 9, 1–6 (2018)

    Article  Google Scholar 

  3. Anderson, P.W.: Resonating valence bonds: a new kind of insulator. Mat. Res. Bull. 8, 153–160 (1973)

    Article  Google Scholar 

  4. Savary, L., Balents, L.: Quantum spin liquids: a review. Rep. Prog. Phys. 80(016502), 1–54 (2017)

    Google Scholar 

  5. Jiang, H.C., Kivelson, S.A.: High temperature superconductivity in a lightly doped quantum spin liquid. Phys. Rev. Lett. 127(097002), 1–6 (2021)

    MathSciNet  Google Scholar 

  6. Chamorro, J.R., McQueen, T.M., Tran, T.T.: Chemistry of quantum spin liquids. Chem. Rev. 121, 2898–2934 (2021)

    Article  Google Scholar 

  7. Mendels, P., Bert, F.: Quantum kagome antiferromagnetic ZnCu3(OH)6Cl2. J. Phys. Soc. Japan 79(011001), 1–9 (2010)

    Google Scholar 

  8. Wen, J., Yu, S.L., Li, S., Yu, W., Li, J.X.: Experimental identification of quantum spin liquids. npj Quantum Mater. 12, 1–9 (2019)

    Google Scholar 

  9. Okamoto, Y., Nohara, M., Aruga-Katori, H., Takagi, H.: Spin-liquid state in the S=1/2 hyper kagome antiferromagnet Na4Ir3O8. Phy. Rev. Lett. 99(137207), 1–4 (2007)

    Google Scholar 

  10. Koteswararao, B., Kumar, R., Khuntia, P., Bhowal, S., Panda, S.K., Rahman, M.R., Mahajan, A.V.: Magnetic properties and heat capacity of the three-dimensional frustrated S=1/2 antiferromagnet PbCuTe2O6. Phys. Rev. B 90(035141), 1–7 (2014)

    Google Scholar 

  11. Bhatt, R.N., Lee, P.A.: Scaling studies of highly disordered spin-1/2 antiferromagnetic systems. Phys. Rev. Lett. 48, 344–347 (1981)

    Article  ADS  Google Scholar 

  12. Kundu, S., Hossain, A., Pranava Keerthi, S., Das, R., Baenitz, M., Baker, P.J., Orain, J.-C., Joshi, D.C., Mathieu, R., Mahadevan, P., Pujari, S., Bhattacharjee, S., Mahajan, A.V., Sarma, D.D.: Signatures of a spin-1/2 cooperative paramagnet in the diluted triangular lattice of Y2CuTiO6. Phy. Rev. Lett. 125(117206), 1–7 (2020)

    Google Scholar 

  13. Saha, P., Nithya, R., Sen, S.: Lead-free stable wide-band-gap double perovskite with absorption in the visible region. J. Electron. Mater 52, 2971–2976 (2023)

    Article  ADS  Google Scholar 

  14. Toby, B.H., Von Dreele, R.B.: GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013)

    Article  Google Scholar 

  15. Singh, K., Kumar, N., Singh, B., Kaushik, S.D., Gaur, N.K., Bhattacharya, S., Rayaprol, S., Simon, C.: Magnetic and dielectric properties of R2CuTiO6 compounds (R=Y, La, Pr and Nd). J Supercond Nov Magn 24, 1829–1838 (2011)

    Article  Google Scholar 

  16. Iliev, M.N., Lee, H.G., Popov, V.N., Abrashev, M.V., Hamed, A., Meng, R.L., Chu, C.W.: Raman- and infrared-active phonons in hexagonal YMnO3 experiment and lattice-dynamical calculations. Phys. Rev. B. 56, 2488–2494 (1997)

    Article  ADS  Google Scholar 

  17. Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., Kirov, A., Capillas, C., Ivantchev, S., Wondratschek, H.: Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Transitions 76, 155–170 (2003)

    Article  Google Scholar 

  18. Litvinchuk, A.P., Iliev, M.N., Popov, V.N., Gospodinov, M.M.: Raman and infrared-active phonons in hexagonal HoMnO3 single crystals: magnetic ordering effects. J. Phys. Condens. Matter. 16, 809–819 (2004)

    Article  ADS  Google Scholar 

  19. Iliev, M.N., Abrashev, M.V., Lee, H.G., Popov, V.N., Sun, Y.Y., Thomsen, C., Meng, R.L., Chu, C.W.: Raman spectroscopy of orthorhombic perovskite like YMnO3 and LaMnO3. Phys. Rev. B. 57, 2872–2877 (1998)

    Article  ADS  Google Scholar 

  20. Suturin, S.M., Korovin, A.M., Bursian, V.E., Lutsev, L.V., Bourobina, V., Yakovlev, N.L., Montecchi, M., Pasquali, L., Ukleev, V., Vorobiev, A., Devishvili, A., Sokolov, N.S.: Role of gallium diffusion in the formation of a magnetically dead layer at the Y3Fe5O12/Gd3Ga5O12 epitaxial interface. Phys. Rev. Mater. 2(104404), 1–9 (2018)

    Google Scholar 

  21. Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray photoelectron spectroscopy. Minnesota. (1992)

  22. Choudhury, D., Sarma, D. D.: Robust dielectric properties of B-site size-disordered hexagonal Ln2CuTiO6 (Ln = Y, Dy, Ho, Er, and Yb). J. Vac. Sci. Technol. 32(03D118), 1–6 (2014)

  23. Mansoorie, F.N., Singh, J., Kumar, A.: Wet chemical synthesis and electrochemical performance of novel double perovskite Y2CuMnO6 nanocrystallites. Mater. Sci. Semicond. Process. 107(104826), 1–6 (2020)

    Google Scholar 

  24. Singh, R.R.P.: Valence bond glass phase in dilute kagome antiferromagnets. Phys. Rev. Lett. 104(177203), 1–4 (2010)

    Google Scholar 

  25. Gopal, E.S.R.: Specific heats at low temperature. New York (1966)

  26. Okuda, T., Kajimoto, R., Noda, M., Kuwahara, H.: Schottky specific heat of the lightly Mn-substituted electron-doped SrTiO3. AIP Adv. 8(101339), 1–5 (2018)

    Google Scholar 

  27. Gao, B., Chen, T., Tam, D.W., Huang, C.-L., Sasmal, K., Adroja, D.T., Ye, F., Cao, H., Sala, G., Stone, M.B., Baines, C., Verezhak, J.A.T., Hu, H., Chung, J.-H., Xu, X., Cheong, S.-W., Nallaiyan, M., Spagna, S., Maple, M.B., Nevidomskyy, A.H., Morosan, E., Chen, G., Pengcheng, D.: Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore. Nat. Phys. 15, 1052–1057 (2019)

    Article  Google Scholar 

  28. Kimchi, I., Sheckelton, J.P., McQueen, T.M., Lee, P.A.: Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat. Commun. 9(4367), 1–5 (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Soumee Chakraborty, MSG, for the Raman spectroscopy measurements and Er. M. P. Saravanan, UGC-DAE CSR, Indore, for the heat capacity measurements from 4 K down to 100 mK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nithya.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Nithya, R., Sathyanarayana, A.T. et al. Experimental Evidences for Quantum Spin Liquid Ground State in Layered Hexagonal Y2CuTiO6. J Supercond Nov Magn 36, 1683–1691 (2023). https://doi.org/10.1007/s10948-023-06611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06611-7

Keywords

Navigation