Skip to main content
Log in

Spin State of the Co3+ Ions in the Layered TbBaCo2O5.5 Cobaltite in the Metal–Insulator Transition Range

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A scheme is proposed to describe the spin state of the Co3+ ions in the layered TbBaCo2O5.5 cobaltite near the metal–insulator transition. The spin state of the Co3+ ions in the metallic phase corresponds to a mixture of the HS(\(t_{{2g}}^{4}\)\(e_{g}^{2}\), S = 2) and LS(\(t_{{2g}}^{6}\)\(e_{g}^{0}\), S = 0) states taken at approximately the same proportion. The transition into a nonmetallic state occurs due to the transformation of the HS state into the LS state in octahedra and part of the LS state into the IS(\(t_{{2g}}^{5}\)\(e_{g}^{1}\), S = 1) state in pyramids (near TC ~ 280 K). The proposed scheme agrees with the well-known structural data obtained for the TbBaCo2O5.5 cobaltites. As follows from volumetric and linear expansion, the transition takes place over a wide temperature range TTMI ± 50 K. The study of thermal expansion shows that an LS/IS state is retained down to T = 80 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. As follows from [13], the field dependence of the magnetization M(H) of the GdBaCo2O5.5 sample studied in [4, 7] is well described by Eq. (3) with the parameters of the free Gd3+ ion at θPM = –1 K.

  2. As follows from [13], the Co3+ ions in the metallic phase of PrBaCo2O5.50 are in an HS/IS state at the ratio 1 : 1 if the PM contribution is taken into account.

REFERENCES

  1. C. Martin, A. Maignan, D. Pelloquin, et al., Appl. Phys. Lett. 71, 1421 (1997).

    Article  ADS  Google Scholar 

  2. A. Maignan, C. Martin, D. Pelloquin, et al., J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  3. A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B 71, 134414 (2005).

    Article  ADS  Google Scholar 

  4. C. Frontera, J. L. García-Muñoz, A. Llobet, et al., Phys. Rev. B 65, 180405(R) (2002).

  5. Y. Moritomo, T. Akimoto, M. Takeo, et al., Phys. Rev. B 61, 13325(R) (2000).

  6. H. Kusuya, A. Machida, Y. Moritomo, et al., J. Phys. Soc. Jpn. 70, 3577 (2001).

    Article  ADS  Google Scholar 

  7. M. Respaud, C. Frontera, J. L. García-Muñoz, M. A. Aranda, B. Raquet, J. M. Broto, H. Rakoto, M. Goiran, A. Llobet, and J. Rodriguez-Carvajal, Phys. Rev. B 64, 214401 (2001).

    Article  ADS  Google Scholar 

  8. S. Roy, M. Khan, Y. Q. Guo, et al., Phys. Rev. B 65, 064437 (2002).

    Article  ADS  Google Scholar 

  9. F. Fauth, E. Suard, V. Caignaert, et al., Phys. Rev. B 66, 184421 (2002).

    Article  ADS  Google Scholar 

  10. Z. X. Zhou, S. McCal., C. S. Alexander, et al., Phys. Rev. B 70, 024425 (2004).

    Article  ADS  Google Scholar 

  11. H. D. Zhou and J. B. Goodenough, J. Solid State Chem. 177, 3339 (2004).

    Article  ADS  Google Scholar 

  12. E. Pomjakushina, K. Conder, and V. Pomjakushin, Phys. Rev. B 73, 113105 (2006).

    Article  ADS  Google Scholar 

  13. C. Frontera, J. L. García-Muñoz, A. E. Carillo, et al., Phys. Rev. B 74, 054406 (2006).

    Article  ADS  Google Scholar 

  14. Y. Diaz-Fernandez, L. Malavasi, and M. C. Mozzati, Phys. Rev. B 78, 144405 (2008).

    Article  ADS  Google Scholar 

  15. M. Baran, V. I. Gatalskaya, R. Szymczak, et al., J. Phys.: Condens. Matter 15, 8853 (2003).

    ADS  Google Scholar 

  16. E. L. Nagaev, Phys. Usp. 39, 781 (1996).

    Article  ADS  Google Scholar 

  17. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  18. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).

    Article  ADS  Google Scholar 

  19. V. A. Ryzhov, A. V. Lazuta, V. P. Khavronin, P. L. Molkanov, Ya. M. Mukovskii, and A. E. Pestun, Phys. Solid State 56, 68 (2014).

    Article  ADS  Google Scholar 

  20. N. I. Solin, S. V. Naumov, S. V. Telegin, et al., JETP Lett. 104, 49 (2016).

    Article  ADS  Google Scholar 

  21. N. I. Solin, S. V. Naumov, and S. V. Telegin, J. Exp. Theor. Phys. 128, 281 (2019).

    Article  ADS  Google Scholar 

  22. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  23. Z. Hu, Hua Wu, T. C. Koethe, et al., New J. Phys. 14, 123025 (2012).

    Article  ADS  Google Scholar 

  24. M. Hidaka, M. Soejima, R. P. Wijesundera, et al., Phys. Status Solidi B 243, 1813 (2006).

    Article  ADS  Google Scholar 

  25. M. Kopcewicz, D. D. Khalyavin, I. O. Troyanchuk etal., J. Phys.: Condens. Matter 14, 9007 (2002).

    ADS  Google Scholar 

  26. N. I. Solin, S. V. Naumov, and S. V. Telegin, JETP Lett. 107, 203 (2018).

    Article  ADS  Google Scholar 

  27. M. Soda, Y. Yasui, T. Fujita, et al., J. Phys. Soc. Jpn. 72, 1729 (2003).

    Article  ADS  Google Scholar 

  28. E. Rautama and M. Karppinen, J. Solid State Chem. 83, 1102 (2010).

    Article  ADS  Google Scholar 

  29. S. V. Vonsovskii, Magnetism (Wiley, New York, 1971).

  30. T. I. Arbuzova, S. V. Telegin, S. V. Naumov, et al., Solid State Phenom. 215, 83 (2014).

    Article  Google Scholar 

  31. S. Kolesnik, B. Dabrowski, O. Chmaissem, et al., Phys. Rev. B 86, 1064434 (2012).

    Article  ADS  Google Scholar 

  32. J. S. Smart, Effective Field Theories of Magnetism (Saunders, London, 1966).

    Book  Google Scholar 

  33. V. A. Dudnikov, D. A. Velikanov, N. V. Kazak, C. R. Michel, J. Bartolome, A. Arauzo, S. G. Ovchinnikov, and G. S. Patrin, Phys. Solid State 54, 79 (2012).

    Article  ADS  Google Scholar 

  34. N. B. Ivanova, N. V. Kazak, C. R. Michel, A. D. Balaev, and S. G. Ovchinnikov, Phys. Solid State 49, 2126 (2007).

    Article  ADS  Google Scholar 

  35. A. Muñoz, M. Martínez-Lope, J. A. Alonso, et al., Eur. J. Inorg. Chem. 2012, 5825 (2012).

    Article  Google Scholar 

  36. K. R. Zhdanov, M. Yu. Kameneva, L. P. Kozeeva, and A. N. Lavrov, Phys. Solid State 52, 1688 (2010).

    Article  ADS  Google Scholar 

  37. V. P. Plakhty, Y. P. Chernenkov, S. N. Barilo, et al., Phys. Rev. B 71, 214407 (2005).

  38. M. García-Fernandes, V. Scarnoli, U. Staub, et al., Phys. Rev. B 78, 054424 (2008).

Download references

ACKNOWLEDGMENTS

We thank A.V. Korolev and D.A. Shishkin for the magnetic measurements, as well as A.V. Telegin for fruitful discussion.

Funding

This work was performed in terms of a state assignment of the Federal Agency of Scientific Organizations, project Spin no. AAAA-A18-118020290104-2. This work was supported in part by the Russian Foundation for Basic Research (project 20-02-00461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solin, N.I., Naumov, S.V. & Kazantsev, V.A. Spin State of the Co3+ Ions in the Layered TbBaCo2O5.5 Cobaltite in the Metal–Insulator Transition Range. J. Exp. Theor. Phys. 130, 690–698 (2020). https://doi.org/10.1134/S1063776120050106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120050106

Navigation