Skip to main content
Log in

Triple A-Site Columnar Ordered Y2CuGaTM4O12 (TM = Mn and Fe) Quadruple Perovskites for Spintronic Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Generalized gradient approximation with Hubbard potential (GGA + U) within the framework of density functional theory (DFT), the structural and electronic properties, as well as the magnetic ordering of the quadruple perovskites Y2CuGaTM4O12 (TM = Mn and Fe), are studied. Formation energy indicates that Y2CuGaMn4O12 is more stable than the Y2CuGaFe4O12 and the estimated structural parameters are in good accordance with the experiment. The optimized magnetic energy curves show that these compounds have a type I ferrimagnetic order. According to the Heisenberg model, strong long-range Mn+3–O2−–Cu2+–O2−–Mn+3 interactions are mediated by a super exchange mechanism. The susceptibility data shows that these compounds undergo multiple magnetic transitions due to different magnetic interactions (J1 (Cu+2–Cu+2), J2 (Cu+2–Mn+3), and J3 (Mn+3–Mn+3)). The electronic band profiles and density of states shows the half-metallic character of these compounds and Mn d electrons are responsible for their half-metallic nature. Beside this Mn d state electrons are also responsible for magnetism with addition of Cu atoms instead of Ga. DFT and the Heisenberg model's estimated results are confirmed by magnetic susceptibility. These compounds are anticipated to be appropriate for spintronic applications due to their ferrimagnetic nature and high spin polarization near the Fermi level.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data used in the current study are available from the corresponding author on reasonable request.

References

  1. R.J. Celotta, D.T. Pierce, Polarized electron probes of magnetic surfaces. Science 234, 333 (1986). https://doi.org/10.1126/science.234.4774.333

    Article  CAS  PubMed  ADS  Google Scholar 

  2. I. Zutic, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  CAS  ADS  Google Scholar 

  3. M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008). https://doi.org/10.1103/RevModPhys.80.315

    Article  CAS  ADS  Google Scholar 

  4. A. Fert, Nobel lecture: origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517 (2008). https://doi.org/10.1103/RevModPhys.80.1517

    Article  CAS  ADS  Google Scholar 

  5. X.L. Wang, S.X. Dou, C. Zhang, Zero-gap materials for future spintronics, electronics and optics. NPG. Asia Mater. 2, 31 (2010). https://doi.org/10.1038/asiamat.2010.7

    Article  CAS  Google Scholar 

  6. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  7. J. Torrejon, J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier, Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017). https://doi.org/10.1038/nature23011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Kwon, K. Geoffrey, S.D. Beach, K.J. Lee, T. Ono, T. Rasing, H. Yang, Ferrimagnetic spintronics. Nat. Mater. Mater. 21, 24–34 (2022). https://doi.org/10.1038/s41563-021-01139-4

    Article  CAS  ADS  Google Scholar 

  9. C. Kim, S. Lee, H.G. Kim, J.H. Park, K.W. Moon, J.Y. Park, J.M. Yuk, K.J. Lee, B.G. Park, S.K. Kim, K. Jin Kim, C. Hwang, Distinct handedness of spin wave across the compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020). https://doi.org/10.1038/s41563-020-0722-8

    Article  CAS  PubMed  ADS  Google Scholar 

  10. L. Gao, X. Wang, X. Ye, W. Wang, Z. Liu, S. Qin, Z. Hu, H.J. Lin, S.C. Weng, C.T. Chen, P. Ohresser, F. Baudelet, R. Yu, C. Jin, Y. Long, Near-room-temperature ferrimagnetic ordering in a B-site-disordered 3d–5d-hybridized quadruple perovskite oxide, CaCu3Mn2Os2O12. Inorg. Chem. 58, 15529 (2019). https://doi.org/10.1021/acs.inorgchem.9b02576

    Article  CAS  PubMed  Google Scholar 

  11. X. Wang, M. Liu, X. Shen, Z. Liu, Z. Hu, K. Chen, P. Ohresser, L. Nataf, F. Baudelet, H.J. Lin, C.T. Chen, Y.L. Soo, Y. Yang, C. Jin, Y. Long, High-temperature ferrimagnetic half metallicity with wide spin-up energy gap in NaCu3Fe2Os2O12. Inorg. Chem. 58, 320 (2019). https://doi.org/10.1021/Acs.Inorgchem.8b02404

    Article  CAS  PubMed  Google Scholar 

  12. H. Deng, M. Liu, J. Dai, Z. Hu, C. Kuo, Y. Yin, J. Yang, X. Wang, Q. Zhao, Y. Xu, Z. Fu, J. Cai, H. Guo, K. Jin, T. Pi, Y. Soo, G. Zhou, J. Cheng, K. Chen, P. Ohresser, Y. Yang, C. Jin, L.H. Tjeng, Y. Long, Strong enhancement of spin ordering by A-site magnetic ions in the ferrimagnetic CaCu3Fe2Os2O12. Phys. Rev. B 94, 024414 (2016). https://doi.org/10.1103/Physrevb.94.024414

    Article  ADS  Google Scholar 

  13. H. Li, Z. Zhu, Z. Ge, A. Sun, Y. Tian, Ferrimagnetic semiconductor with a direct bandgap. Appl. Phys. Lett. 116, 122401 (2020). https://doi.org/10.1063/1.5141509

    Article  CAS  ADS  Google Scholar 

  14. W.T. Chen, M. Mizumaki, H. Seki, M.S. Senn, T. Saito, D. Kan, J.P. Attfield, Y. Shimakawa, A half-metallic A and B-site-ordered quadruple perovskite oxide CaCu3Fe2Re2O12 with large magnetization and a high transition temperature. Nat. Commun. 5, 3909 (2014). https://doi.org/10.1038/ncomms4909

    Article  CAS  PubMed  ADS  Google Scholar 

  15. M. Arejdal, A. Jabar, L. Bahmad, A. Benyoussef, Magnetic properties of the quadruple perovskite oxide CaCu3Fe2Re2O12: Monte Carlo study. Superlattices Microstruct. 101, 329–340 (2016)

    Article  ADS  Google Scholar 

  16. Z. Liu, Q. Sun, X. Ye, X. Wang, L. Zhou, X. Shen, K. Chen, L. Nataf, F. Baudelet, S. Agrestini, C.T. Chen, H.J. Lin, H.B. Vasili, M. Valvidares, Z. Hu, Y.F. Yang, Y. Long, Quadruple perovskite oxide LaCu3Co2Re2O12: a ferrimagnetic half metal with nearly 100% B-site degree of order. Appl. Phys. Lett. 117, 152402 (2020). https://doi.org/10.1063/5.0025704

    Article  CAS  ADS  Google Scholar 

  17. Z. Liu, X. Wang, X. Ye, X. Shen, Y. Bian, W. Ding, S. Agrestini, S.C. Liao, H.J. Lin, C.T. Chen, S.C. Weng, K. Chen, P. Ohresser, L. Nataf, F. Baudelet, Z. Sheng, S. Francoual, J.R.L. Mardegan, O. Leupold, Z. Li, X. Xi, W. Wang, L.H. Tjeng, Z. Hu, Y. Long, Observation of A-site antiferromagnetic and B-site ferrimagnetic orderings in the quadruple perovskite oxide CaCu3Co2Re2O12. Phys. Rev. B 103, 014414 (2021). https://doi.org/10.1103/PhysRevB.103.014414

    Article  CAS  ADS  Google Scholar 

  18. X. Ye, Z. Liu, W. Wang, Z. Hu, H.J. Lin, S.C. Weng, C.T. Chen, R. Yu, L.H. Tjeng, Y. Long, High-pressure synthesis and spin glass behavior of a Mn/Ir disordered quadruple perovskite CaCu3Mn2Ir2O12. J. Phys. Condens. Matter 32, 075701 (2020). https://doi.org/10.1088/1361-648X/ab5386

    Article  CAS  PubMed  ADS  Google Scholar 

  19. A.A. Belik, D.D. Khalyavin, Y. Matsushita, K. Yamaura, Triple A-site cation ordering in the ferrimagnetic Y2CuGaMn4O12 Perovskite. Inorg. Chem. 61, 14428–14435 (2022). https://doi.org/10.1021/acs.inorgchem.2c02343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k, an augmented plane wave + local orbital program for calculating properties of solids. J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061@jcp.2020.ESS2020

    Article  CAS  PubMed  ADS  Google Scholar 

  21. M.I. Hussain, R.M.A. Khalil, F. Hussain, Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-Popper layered Perovskites Bi2XO4 (X = Be, Mg) using Tran and Blaha-Modified Becke-Johnson approach for optoelectronic applications. Energy Technol. 9, 2001026–36 (2021). https://doi.org/10.1002/ente.202001026

    Article  CAS  Google Scholar 

  22. R.M.A. Khalil, M.I. Hussain, A. Batool, F. Hussain, A.M. Rana, N. Luqman, Computational study of TbMn2O5 and Tb2MnCoO6 to probe the structural, vibrational and optoelectronic properties using PBE + U functional. Optik 241, 166835 (2021). https://doi.org/10.1016/j.ijleo.2021.166835

    Article  CAS  ADS  Google Scholar 

  23. E.A. Khera, H. Ullah, M. Imran, R.M.A. Khalil, F. Hussain, H. Algadi, Theoretical investigation of CsBX3 (B = Pb, Sn; X = I, Br, Cl) using Tran-Blaha modified Becke-Johnson approximation for flexible photoresponsive memristors. Adv. Theory Simul. (2021). https://doi.org/10.1002/adts.202100011

    Article  Google Scholar 

  24. L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107

    Article  CAS  ADS  Google Scholar 

  25. T.K. Bhowmik, T.P. Sinha, Al-dependent electronic and magnetic properties of YCrO3 with magnetocaloric application: an ab-initio and Monte Carlo approach. Physica B 606, 412659 (2021). https://doi.org/10.1016/j.physb.2020.412659

    Article  CAS  Google Scholar 

  26. S. Halder, T.K. Bhowmik, A. Dutta, T.P. Sinha, The photophysical anisotropy and electronic structure of new narrow band gap perovskites Ln2AlMnO6 (Ln = La, Pr, Nd): an experimental and DFT perspective. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.170

    Article  Google Scholar 

  27. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  ADS  Google Scholar 

  28. S. Mehmood, Z. Ali, New anti-ferromagnetic tri-transition quaternary perovskites for magnetic cloaking and spintronic applications. Mater. Chem. Phys. 282, 125915 (2022). https://doi.org/10.1016/j.matchemphys.2022.125915

    Article  CAS  Google Scholar 

  29. G.K.H. Madsen, D.J. Singh, BoltzTraP: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  ADS  Google Scholar 

  30. R. Kovacik, S.S. Murthy, C.E. Quiroga, C. Ederer, C. Franchini, Combined first-principles and model Hamiltonian study of the perovskite series RMnO3 (R = La, Pr, Nd, Sm, Eu and Gd). Phys. Rev. B 93, 075139 (2016). https://doi.org/10.1103/PhysRevB.93.075139

    Article  CAS  ADS  Google Scholar 

  31. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947). https://doi.org/10.1103/PhysRev.71.809

    Article  CAS  ADS  Google Scholar 

  32. S. Shadab, Z. Ali, S. Mehmood, Y.T. Alharbi, S.A. Alderhami, L. Almanqur, Optoelectronic, magnetic and thermoelectric properties of copper substituted calcium manganate quaternary perovskites. Opt. Quantum. Electron. 55, 856 (2023). https://doi.org/10.1007/s11082-023-05128-6

    Article  CAS  Google Scholar 

  33. S. Mehmood, Z. Ali, N. Alwadai, M. Al Huwayz, M.S. Al-Buriahi, S.V. Trukhanov, D.I. Tishkevich, A.V. Trukhanov, Combined first principles and Heisenberg model studies of ferrimagnetic tri-transition quaternary perovskites CaCu3B2Re2O12 (B = Mn, Fe, Co and Ni). J. Phys. Chem. Solids 174, 111162 (2023). https://doi.org/10.1016/j.jpcs.2022.111162

    Article  CAS  Google Scholar 

  34. S. Mehmood, Z. Ali, R. Altuijri, L.A.E. Maati, S.R. Khan, S.V. Trukhanov, T.I. Zubar, M.I. Sayyed, D.I. Tishkevich, A.V. Trukhanov, First-principles study of the rare earth anti-TH3P4 type zintles for opto-electronic and thermoelectric applications. Physica B 670, 415353 (2023). https://doi.org/10.1016/j.physb.2023.415353

    Article  CAS  Google Scholar 

  35. F.F. Alharbi, S. Mehmood, Z. Ali, S. Aman, R.Y. Khosa, V.G. Kostishyn, S.V. Trukhanov, M.I. Sayyed, D.I. Tishkevich, A.V. Trukhanov, First principles calculation to investigate the effect of Mn substitution on Cu site in CeCu3-xMnxV4O12 (x = 0, 1, 2 and 3) system. RSC Adv. 13, 12973 (2023). https://doi.org/10.1039/d3ra00263b

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. S.V. Ovsyannikov, Y.G. Zainulin, N.I. Kadyrova, A.P. Tyutyunnik, A.S. Semenova, D. Kasinathan, A.A. Tsirlin, N. Miyajima, A.E. Karkin, New antiferromagnetic Perovskite CaCo3V4O12 prepared at high-pressure and high-temperature conditions. Inorg. Chem. 52(20), 11703–11710 (2013). https://doi.org/10.1021/Ic400649h

    Article  CAS  PubMed  Google Scholar 

  37. S. Lv, X. Liu, H. Li, D. Han, J. Meng, Covalent state and the electronic and transport properties of CaCu3Ni4O12: a first-principles study. J. Phys. Chem. C 115, 2366 (2011). https://doi.org/10.1021/jp108482c

    Article  CAS  Google Scholar 

  38. L. Chen, C.L. Wang, First principles study of the electron structures of CaCu3Mn4O12 and CaCu3Ti4O12. J. Magn. Magn. Mater. 312, 266 (2007). https://doi.org/10.1016/j.jmmm.2006.10.212

    Article  CAS  ADS  Google Scholar 

  39. X.J. Liu, H.P. Xiang, P. Cai, X.F. Hao, Z.J. Wu, J. Meng, A firstprinciples study of the different magnetoresistance mechanisms in CaCu3Mn4O12 and LaCu3Mn4O12. J. Mater. Chem. 16, 4243 (2006). https://doi.org/10.1039/b609895a

    Article  CAS  Google Scholar 

  40. R. Weht, W.E. Pickett, Magnetoelectronic properties of a ferrimagnetic semiconductor: the hybrid cupromanganite CaCu3Mn4O12. Phys. Rev. B (2001). https://doi.org/10.1103/PhysRevB.65.014415

    Article  Google Scholar 

  41. J. Chenavas, J.C. Joubert, M. Marezio, The synthesis an crystal structure of CaCu3Mn4O12: a new ferromagnetic perovskite like compound. J. Solid State Chem. 14, 25 (1975). https://doi.org/10.1016/0022-4596(75)90358-8

    Article  CAS  ADS  Google Scholar 

  42. Y. Shimakawa, Crystal and magnetic structures of CaCu3Fe4O12 and LaCu3Fe4O12: distinct charge transitions of unusual high valence Fe. J. Phys. D Appl. Phys. (2015). https://doi.org/10.1088/0022-3727/48/50/504006

    Article  Google Scholar 

  43. S. Mehmood, Z. Ali, Y.T. Alharbi, S.A. Alderhami, L. Almanqur, Structural and magneto-elastic properties of the quadruple Perovskites CaCu3B2Os2O12 (B = Mn-Ni): the Heisenberg model and DFT study. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10555-y

    Article  Google Scholar 

  44. S. Mehmood, Z. Ali, DFT study of the spin glass and ferrimagnetism in quadruple perovskites CaCu3B2Ir2O12 (B = Mn, Fe Co, and Ni) for spintronic applications. Appl. Phys. A 129, 76 (2023). https://doi.org/10.1007/s00339-022-06352-9

    Article  CAS  ADS  Google Scholar 

  45. T.K. Bhowmik, T.P. Sinha, The magnetic peculiarity and the optoelectronic properties of Pr2CrMnO6 from DFT and Monte Carlo simulation. J. Supercond. Nov. Magn. 35, 777–786 (2022). https://doi.org/10.1007/s10948-021-06108-1

    Article  CAS  Google Scholar 

  46. N.A. Ismayilova, S.Q. Asadullayeva, First principle calculation of magnetic properties of doped Mn:ZnGa2S4. J. Supercond. Nov. Magn. 35, 1107–1111 (2022). https://doi.org/10.1007/s10948-022-06147-2

    Article  CAS  Google Scholar 

  47. N.A. Ismayilova, S.H. Jabarov, First principles calculations of the magnetic properties of PbTi1−xMnxO3. Can. J. Phys. (2022). https://doi.org/10.1139/cjp-2022-0008

    Article  Google Scholar 

  48. S.G. Asadullayeva, N.A. Ismayilova, N.T. Mamedov, A.H. Bayramov, M.A. Musayev, Q.Y. Eyyubov, E.K. Kasumova, I.G. Afandiyeva, K.O. Sadig, Photoluminescence and density functional theory analysis of BaTiO3:Mn. Solid State Chem. 372, 115307 (2023). https://doi.org/10.1016/j.ssc.2023.115307

    Article  CAS  Google Scholar 

  49. N.A. Ismayilova, I.I. Abbasov, First principle calculation of electronic, optical and magnetic properties of Zn1-xFexSe compound. Int. J. Mod. Phys. B (2021). https://doi.org/10.1142/S0217979221502787

    Article  Google Scholar 

  50. H.A. Salmah, S. Mehmood, Eu based layered EuFAgX (X = S, Se and Te) magnetic semiconductors for optoelectronic and thermoelectric applications. Opt. Quantum Electron. 55, 1292 (2023). https://doi.org/10.1007/s11082-023-05580-4

    Article  CAS  Google Scholar 

  51. D. Lin, Q. Luo, H. Zheng, L. Tang, W. Zhana, K. Tang, A new oxygen-free cobalt-based compound SmCoAsF with multiple magnetic transitions. Cryst. Eng. Commun. 22, 4268–4274 (2020). https://doi.org/10.1039/D0CE00448K

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HAS: Software, Formal analysis, Writing- Original draft preparation; SM: Data curation, Methodology, Investigation, Writing- Reviewing and Editing; ZA: Visualization Conceptualization, Project administration, Supervision.

Corresponding authors

Correspondence to Shahid Mehmood or Zahid Ali.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsalmah, H.A., Mehmood, S. & Ali, Z. Triple A-Site Columnar Ordered Y2CuGaTM4O12 (TM = Mn and Fe) Quadruple Perovskites for Spintronic Applications. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02964-7

Keywords

Navigation