Skip to main content
Log in

Levitation Forces Acting on an HTS Sample in the Field of a Permanent Magnet

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the Monte Carlo method, the vertical z-component of levitation force acting on a thin HTS film in a field simulating the inhomogeneous field of a permanent magnet is calculated within the framework of a two-dimensional model of a layered HTS. The dependences of the vertical component of the levitation force on the distance to the magnet are obtained at different concentrations of pinning centers and at temperatures ranging from 1 to 50 K. A case is simulated in which a superconducting sample starts moving towards a magnet from infinity and then moves away from the magnet. The change of sign of the levitation force corresponds to the movement away from the magnet when trapped magnetic flux is present in the sample. The presence of hysteresis of the levitation force is demonstrated. It is also shown that the levitation force does not change its sign in a defect-free sample and in a sample with a large number of defects. This is due to the peculiarities of the distribution of vortex density and currents in the sample during magnetization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hull, J.R.: Superconducting bearings. Supercond. Sci. Technol. 13(2), R1–R15 (2000). https://doi.org/10.1088/0953-2048/13/2/201

    Article  ADS  MathSciNet  Google Scholar 

  2. Hull, J.R., Murakami, M.: Applications of bulk high-temperature superconductors. Proc. IEEE 92(10), 1705–1718 (2004). https://doi.org/10.1109/JPROC.2004.833796

    Article  Google Scholar 

  3. Ermolaev, Y.S., Rudnev, I.A.: A new method of determining the reversible magnetization loop of bulk high-temperature superconductors. Tech. Phys. Lett. 30(9), 709–711 (2004). https://doi.org/10.1134/1.1804571

    Article  ADS  Google Scholar 

  4. Ermolaev, Yu.S., Rudnev, I.A.: Calculating levitation forces in the magnet-high-temperature superconductor systems. Tech. Phys. Lett. 31(12), 1065–1067 (2005). https://doi.org/10.1134/1.2150900

    Article  ADS  Google Scholar 

  5. Li, H., Deng, Z., Jin, L., Li, J., Li, Y., Zheng, J.: Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model. Supercond. Sci. Technol. 31(7), 075010 (2018). https://doi.org/10.1088/1361-6668/aac860

    Article  ADS  Google Scholar 

  6. Xu, J., Li, C., Miao, X., Zhang, C., Yuan, X.: An overview of bearing candidates for the next generation of reusable liquid rocket turbopumps. Chinese Journal of Mechanical Engineering 33(1), 26 (2020). https://doi.org/10.1186/s10033-020-00442-6

    Article  ADS  Google Scholar 

  7. Morandi, A., Fabbri, M., Ribani, P.L., Dennis, A., Durrell, J., Shi, Y., Cardwell, D.: The measurement and modeling of the levitation force between single-grain YBCO bulk superconductors and permanent magnets. IEEE Trans. Appl. Supercond. 28(5), 1–10 (2018). https://doi.org/10.1109/TASC.2018.2822721

    Article  Google Scholar 

  8. Osipov, M., Starikovskii, A., Anishenko, I., Pokrovskii, S., Abin, D., Rudnev, I.: The influence of temperature on levitation properties of CC-tape stacks. Supercond. Sci. Technol. 34(4), 045003 (2021). https://doi.org/10.1088/1361-6668/abe18e

    Article  ADS  Google Scholar 

  9. Osipov, M., Anishenko, I., Starikovskii, A., Abin, D., Pokrovskii, S., Podlivaev, A., Rudnev, I.: Scalable superconductive magnetic bearing based on non-closed CC tapes windings. Supercond. Sci. Technol. 34(3), 035033 (2021). https://doi.org/10.1088/1361-6668/abda5a

    Article  ADS  Google Scholar 

  10. Osipov, M., Anishenko, I., Starikovskii, A., Abin, D., Pokrovskii, S., Podlivaev, A., Rudnev, I.: Modeling of magnetization and levitation force of HTS tapes in magnetic fields of complex configurations. Supercond. Sci. Technol. 32(10), 105001 (2019). https://doi.org/10.1088/1361-6668/ab2bbe

    Article  Google Scholar 

  11. Osipov, M., Starikovskii, A., Abin, D., Rudnev, I.: Influence of the critical current on the levitation force of stacks of coated conductor superconducting tapes. Supercond. Sci. Technol. 32(5), 054003 (2019). https://doi.org/10.1088/1361-6668/ab06e6

    Article  ADS  Google Scholar 

  12. Rudnev, I., Osipov, M., Pokrovskii, S., Podlivaev, A.: The influence of cyclical lateral displacements on levitation and guidance force for the system of coated conductor stacks and permanent magnets. Materials Research Express 6(3), 036001 (2018). https://doi.org/10.1088/2053-1591/aaf7ae

    Article  ADS  Google Scholar 

  13. Osipov, M., Starikovskii, A., Anishenko, I., Pokrovskii, S., Abin, D., Rudnev, I.: Magnetic-force characteristics of hybrid levitation systems based on CC-tapes. IEEE Trans. Appl. Supercond. 32(4), 1–5 (2021). https://doi.org/10.1109/TASC.2021.3135230

    Article  Google Scholar 

  14. Osipov, M., Starikovskii, A., Anishenko, I., Pokrovskii, S., Abin, D., Rudnev, I.: Influence of temperature on levitation characteristics of the system CC tapes–permanent magnets at lateral displacements. J. Magn. Magn. Mater. 546, 168896 (2022). https://doi.org/10.1016/j.jmmm.2021.168896

    Article  Google Scholar 

  15. Futamura, M., Homma, S.: Effects of dimensions in added ring-shaped magnet on superconducting levitation. IEEE Trans. Appl. Supercond. 31(5), 1–4 (2021). https://doi.org/10.1109/TASC.2021.3064903

    Article  Google Scholar 

  16. Rudnev, I.A., Anischenko, I.V.: Physical principles of creation of Maglev systems based on second generation high-temperature superconducting composites (a review) Zhurnal Tekhnicheskoi Fiziki 91(12), 1813–1847 (in Russian, will be published in English in Technical Physics, 2022) (2021). https://doi.org/10.21883/JTF.2021.12.51750.101-21

  17. Podlivaev, A.I., Rudnev, I.A., Shabanova, N.P.: Magnetic-field dependence of the local critical current density in the second-generation HTSC tapes. Bull. Lebedev. Phys. Inst. 41(12), 351–354 (2014). https://doi.org/10.3103/S1068335614120033

    Article  ADS  Google Scholar 

  18. Rudnev, I.A., Odintsov, D.S., Kashurnikov, V.A.: Critical current suppression in superconductors and its dependence on the defects concentration. Phys. Lett. A 372(21), 3934–3936 (2008). https://doi.org/10.1016/j.physleta.2008.02.065

    Article  ADS  MATH  Google Scholar 

  19. Lawrence, W.E., Doniach, S.: Proceedings of LT 12, Kyoto, 1970. (1971)

  20. Kashurnikov, V.A., Maksimova, A.N., Rudnev, I.A.: Magnetization reversal processes in layered high-temperature superconductors with ferromagnetic impurities. Phys. Solid State 56(5), 894–911 (2014). https://doi.org/10.1134/s1063783414050126

    Article  ADS  Google Scholar 

  21. Kashurnikov, V.A., Maksimova, A.N., Rudnev, I.A., Odintsov, D.S.: Critical current density in anisotropic superconductors containing columnar defects. J. Phys: Conf. Ser. 1238(1), 012016 (2019). https://doi.org/10.1088/1742-6596/1238/1/012016

    Article  Google Scholar 

  22. Moroz, A.N., Maksimova, A.N., Kashurnikov, V.A., Rudnev, I.A.: Influence of antidots on the critical current density of HTSC in a magnetic field. J. Phys: Conf. Ser. 1238(1), 012015 (2019). https://doi.org/10.1088/1742-6596/1238/1/012015

    Article  Google Scholar 

  23. Kashurnikov, V.A., Maksimova A.N., Rudnev, I.A., Odintsov, D.S.: Effect of anisotropy on the transport properties of layered high-temperature superconductors with extended magnetic and nonmagnetic defects. J. Siberian Federal Univ. Math. Phys. 11(2), 227–230 (2018). https://doi.org/10.17516/1997-1397-2018-11-2-227-230

  24. Maksimova, A.N., Kashurnikov, V.A., Moroz, A.N., Rudnev, I.A.: Vortex structure of HTSC in an inhomogeneous magnetic field. Phys. Solid State 63(5), 728–737 (2021). https://doi.org/10.1134/S1063783421050115

    Article  ADS  Google Scholar 

  25. Schmidt, V.V.: Introduction to physics of superconductors. MCCME, Moscow (2000)

    Google Scholar 

  26. Riise, A.B., Johansen, T.H., Bratsberg, H., Koblischka, M.R., Shen, Y.Q.: Levitation force from high-Tc superconducting thin-film disks. Phys. Rev. B 60(13), 9855–9861 (1999). https://doi.org/10.1103/PhysRevB.60.9855

    Article  ADS  Google Scholar 

  27. Johansen, T.H., Riise, A.B., Bratsberg, H., Shen, Y.Q.: Magnetic levitation with high-Tc superconducting thin films. J. Supercond. 11(5), 519–524 (1998). https://doi.org/10.1023/A:1022618825582

    Article  ADS  Google Scholar 

  28. Suzuki, T., Ito, E., Sakai, T., Koga, S., Murakami, M., Nagashima, K., Sawa, K.: Temperature dependency of levitation force and its relaxation in HTS. IEEE Trans. Appl. Supercond. 17(2), 3020–3023 (2007). https://doi.org/10.1109/TASC.2007.899403

    Article  ADS  Google Scholar 

  29. Bernstein, P., Colson, L., Dupont, L., Noudem, J.: Investigation of the levitation force of field-cooled YBCO and MgB2 disks as functions of temperature. Supercond. Sci. Technol. 30(6), 065007 (2017). https://doi.org/10.1088/1361-6668/aa69ec

    Article  ADS  Google Scholar 

  30. Sanchez, A., Del-Valle, N., Navau, C., Chen, D.X.: Critical-current density analysis of force and stability in maglev systems. J. Appl. Phys. 105(2), 023906 (2009). https://doi.org/10.1063/1.3054922

    Article  ADS  Google Scholar 

  31. Qin, M.J., Li, G., Liu, H.K., Dou, S.X., Brandt, E.H.: Calculation of the hysteretic force between a superconductor and a magnet. Phys. Rev. B 66(2), 024516 (2002). https://doi.org/10.1103/PhysRevB.66.024516

    Article  ADS  Google Scholar 

  32. Jing, H., Wang, J., Wang, S., Wang, L., Liu, L., Zheng, J., Li, J.: A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle. Physica C: Superconductivity and its applications 463, 426–430 (2007). https://doi.org/10.1016/j.physc.2007.05.030

    Article  ADS  Google Scholar 

  33. Del-Valle, N., Sanchez, A., Navau, C., Chen, D.X.: Magnet guideways for superconducting maglevs: comparison between Halbach-type and conventional arrangements of permanent magnets. J. Low Temp. Phys. 162(1), 62–71 (2011). https://doi.org/10.1007/s10909-010-0225-0

    Article  ADS  Google Scholar 

  34. Sotelo, G.G., Dias, D.H.N., de Andrade, R., Stephan, R.M.: Tests on a superconductor linear magnetic bearing of a full-scale MagLev vehicle. IEEE Trans. Appl. Supercond. 21(3), 1464–1468 (2010). https://doi.org/10.1109/TASC.2010.2086034

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, Sirius University, JSC Russian Railways, and Educational Fund “Talent and Success,” project number 20–38-51012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Maksimova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, A.N., Rudnev, I.A., Kashurnikov, V.A. et al. Levitation Forces Acting on an HTS Sample in the Field of a Permanent Magnet. J Supercond Nov Magn 35, 3093–3100 (2022). https://doi.org/10.1007/s10948-022-06400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06400-8

Keywords

Navigation