Skip to main content
Log in

Vortex Structure of HTSC in an Inhomogeneous Magnetic Field

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The penetration of a magnetic flux into an anisotropic superconductor placed in a gradient magnetic field equivalent to a permanent magnet field is studied numerically. Vortex configurations formed in a defect-free superconductor and also in a superconductor contained defects are calculated. It is shown that the penetration of an inhomogeneous magnetic field into a layered superconductor occurs via the formation of incomplete vortex lines at the boundary, which implies to the appearance of a magnetic field component parallel to the layers. The dependences of the magnetization and energy in magnetic field are calculated for a tree-dimensional HTSC sample and it is shown that there are minima at the energy plot corresponding to stable positions of a magnet with respect to the superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. Dragomir, Q. Ma, J. P. Clancy, A. Ataei, P. A. Dube, S. Sharma, A. Huq, H. A. Dabkowska, L. Taillefer, and B. D. Gaulin, Phys. Rev. Mater. 4, 114801 (2020).

    Article  Google Scholar 

  2. D. van Gennep, A. Hassan, H. Luo, and M. Abdel-Hafiez, Phys. Rev. B 101, 235163 (2020).

    Article  ADS  Google Scholar 

  3. Z. Deng, M. Miki, K. Tsuzuki, B. Felder, R. Taguchi, N. Shinohara, and M. Izumi, IEEE Trans. Appl. Supercond. 21, 1180 (2011).

    Article  ADS  Google Scholar 

  4. Y. Dong, J. Zhu, D. Wei, W. Chen, Q. Du, K. Zhang, P. Chen, H. Jiang, Sh. Wang, T. Guo, and K. Ding, Cryogenics 112, 103195 (2020).

    Article  Google Scholar 

  5. M. Badakhshan and S. M. Mousavi, Phys. C (Amsterdam, Neth.) 547, 51 (2018).

  6. S. B. Güner, M. Abdioglu, K. Oztürk, and S. Ҫelik, J. Alloys Compd. 822, 153637 (2020).

    Article  Google Scholar 

  7. J. Jiang, Y. Li, J. Wang, L. Zhao, Y. Zhang, and Y. Zhao, Phys. C (Amsterdam, Neth.) 568 (2020). https://doi.org/10.1016/j.physc.2019.1353582

  8. Z. M. Zhao, J. M. Xu, X. Y. Yuan, and C. P. Zhang, Phys. C (Amsterdam, Neth.) 549, 154 (2018).

  9. J. R. Clem, Phys. Rev. B 43, 7837 (1991).

    Article  ADS  Google Scholar 

  10. J. R. Clem and M. W. Coffey, Phys. Rev. B 42, 6209 (1990).

    Article  ADS  Google Scholar 

  11. J. R. Clem, M. W. Coffey, and Zh. Hao, Phys. Rev. B 44, 2732 (1991).

    Article  ADS  Google Scholar 

  12. A. E. Koshelev, Phys. Rev. B 71, 174507 (2005).

    Article  ADS  Google Scholar 

  13. A. E. Koshelev, Phys. Rev. B 48, 1180 (1993).

    Article  ADS  Google Scholar 

  14. A. Buzdin and I. Baladié, Phys. Rev. Lett. 88, 147002 (2002).

    Article  ADS  Google Scholar 

  15. S. J. Bending and M. J. W. Dodgson, J. Phys.: Condens. Matter 17, R955 (2005).

    ADS  Google Scholar 

  16. A. V. Samokhvalov, A. S. Mel’nikov, and A. I. Buzdin, Phys. Rev. B 85, 184509 (2012).

    Article  ADS  Google Scholar 

  17. I. Rudnev, D. Abin, M. Osipov, S. Pokrovskiy, Y. Ermolaev, and N. Mineev, Phys. Proc. 65, 141 (2015).

    Article  ADS  Google Scholar 

  18. M. Osipov, A. Starikovskii, D. Abin, and I. Rudnev, Supercond. Sci. Technol. 32, 054003 (2019).

    Article  ADS  Google Scholar 

  19. S. V. Pokrovskii, O. B. Mavritskii, A. N. Egorov, N. A. Mineev, A. A. Timofeev, and I. A. Rudnev, Supercond. Sci. Technol. 32, 075008 (2019).

    Article  ADS  Google Scholar 

  20. I. Anischenko, S. Pokrovskii, I. Rudnev, and M. Osipov, Supercond. Sci. Technol. 32, 105001 (2019).

    Article  Google Scholar 

  21. I. Rudnev, M. Osipov, S. Pokrovskii, and A. Podlivaev, Mater. Res. Express 6, 036001 (2019).

    Article  ADS  Google Scholar 

  22. A. Sanchez and C. Navau, Phys. Rev. B 64, 214506 (2001).

    Article  ADS  Google Scholar 

  23. C. Navau and A. Sanchez, Phys. Rev. B 64, 214507 (2001).

    Article  ADS  Google Scholar 

  24. A. B. Riise, T. H. Johansen, H. Bratsberg, M. R. Koblischka, and Y. Q. Shen, Phys. Rev. B 60, 9855 (1999).

    Article  ADS  Google Scholar 

  25. M. J. Qin, G. Li, H. K. Liu, S. X. Dou, and E. H. Brandt, Phys. Rev. B 66, 024516 (2002).

    Article  ADS  Google Scholar 

  26. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, Phys. Solid State 56, 894 (2014).

    Article  ADS  Google Scholar 

  27. I. A. Rudnev, D. S. Odintsov, and V. A. Kashurnikov, Phys. Lett. A 372, 3934 (2008).

    Article  ADS  Google Scholar 

  28. W. E. Lawrence and S. Doniach, in Proceedings of the LT 12 Conference on Low Temperature Physics, Kyoto, 1970, Ed. by E. Kanda (Keigaku, Tokyo, 1971).

  29. S. Tyagi and Y. Y. Goldschmidt, Phys. Rev. B 70, 024501 (2004).

    Article  ADS  Google Scholar 

  30. Y. Y. Goldschmidt and S. Tyagi, Phys. Rev. B 71, 014503 (2005).

    Article  ADS  Google Scholar 

  31. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  32. Y.-N. Wang, W.-M. Yang, P.-T. Yang, C.-Y. Zhang, J.‑L. Chen, Li-J. Zhang, and Li Chen, Phys. C (Amsterdam, Neth.) 542, 28 (2017).

  33. J. R. Kirtley, V. G. Kogan, J. R. Clem, and K. A. Moler, Phys. Rev. B 59, 4343 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation, project no. 17-19-01527.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Maksimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, A.N., Kashurnikov, V.A., Moroz, A.N. et al. Vortex Structure of HTSC in an Inhomogeneous Magnetic Field. Phys. Solid State 63, 728–737 (2021). https://doi.org/10.1134/S1063783421050115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050115

Keywords:

Navigation