Skip to main content
Log in

Magnet Guideways for Superconducting Maglevs: Comparison Between Halbach-Type and Conventional Arrangements of Permanent Magnets

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The characteristics of the permanent magnets composing the guideway in superconducting magnetic levitation devices are very important for their performance in terms of levitation force and stability. From a model based on minimizing the magnetic energy in the superconductor and considering realistic parameters of actual maglev devices, we calculate the levitation and guidance forces and stability arising from both conventional arrangements and recently proposed Halbach-like arrangements. When a comparison is carefully made under similar conditions, we conclude that not always complicated arrangements based on Halbach arrays bring significant improvements with respect to some simpler arrangements that also provide large force. These results may help improving the design of actual maglev devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, S. Wang, Y. Zeng, H. Huang, F. Luo, Z. Xu, Q. Tang, G. Lin, C. Zhang, Z. Ren, G. Zhao, D. Zhu, S. Wang, H. Jiang, M. Zhu, C. Deng, P. Hu, C. Li, F. Liu, J. Lian, X. Wang, L. Wang, X. Shen, X. Dong, Physica C 378, 809 (2002)

    Article  ADS  Google Scholar 

  2. L. Schultz, O. de Haas, P. Verges, C. Beyer, S. Rohlig, H. Olsen, L. Kuhn, D. Berger, U. Noteboom, U. Funk, IEEE Trans. Appl. Supercond. 15, 2301 (2005)

    Article  Google Scholar 

  3. R.M. Stephan, R. Nicolsky, M.A. Neves, A.C. Ferreira, R. de Andrade Jr., M.A. Cruz Moreira, M.A. Rosario, O.J. Machado, Physica C 408–410, 932 (2004)

    Article  Google Scholar 

  4. L. Schultz, G. Krabbes, G. Fuchs, W. Pfeiffer, K.H. Muller, Z. Met.kd. 93, 1057 (2002)

    Google Scholar 

  5. R.M. Stephan, R. de Andrade, G.C. dos Santos, M.A. Neves, R. Nicolsky, Physica C 386, 490 (2003)

    Article  ADS  Google Scholar 

  6. W. Yang, M. Qiu, Y. Liu, Z. Wen, Y. Duan, X. Chen, Supercond. Sci. Technol. 20, 281 (2007)

    Article  MATH  ADS  Google Scholar 

  7. R.M. Stephan, R. Nicolsky, M.A. Neves, A.C. Ferreira, R. de Andrade Jr., M.A. Cruz Moreira, M.A. Rosário, O.J. Machado, Physica C 408–410, 932 (2004)

    Article  Google Scholar 

  8. M. Qiu, W.J. Yang, Z. Wen, L.Z. Lin, G.H. Yang, Y. Liu, IEEE Trans. Appl. Supercond. 16, 1120 (2006)

    Article  Google Scholar 

  9. L. Zhang, J. Wang, Q. He, J. Zhang, S. Wang, Physica C 459, 33 (2007)

    Article  ADS  Google Scholar 

  10. H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, G. Ma, Y. Zhang, J. Li, Physica C 463–465, 426 (2007)

    Article  Google Scholar 

  11. W. Liu, S.Y. Wang, H. Jing, J. Zheng, M. Jiang, J.S. Wang, Physica C 468, 974 (2008)

    Article  ADS  Google Scholar 

  12. G.T. Ma, Q.X. Lin, J.S. Wang, S.Y. Wang, Z.G. Deng, Y.Y. Lu, M.X. Liu, J. Zheng, Supercond. Sci. Technol. 21, 065020 (2008)

    Article  ADS  Google Scholar 

  13. Z. Deng, J. Wang, J. Zheng, H. Jing, Y. Lu, G. Ma, L. Liu, W. Liu, Y. Zhang, S. Wang, Supercond. Sci. Technol. 21, 115018 (2008)

    Article  ADS  Google Scholar 

  14. A. Sanchez, N. Del-Valle, E. Pardo, D.-X. Chen, C. Navau, J. Appl. Phys. 99, 113904 (2006)

    Article  ADS  Google Scholar 

  15. N. Del-Valle, A. Sanchez, E. Pardo, D.-X. Chen, C. Navau, Appl. Phys. Lett. 90, 042503 (2007)

    Article  ADS  Google Scholar 

  16. N. Del-Valle, A. Sanchez, E. Pardo, D.-X. Chen, C. Navau, Appl. Phys. Lett. 91, 112507 (2007)

    Article  ADS  Google Scholar 

  17. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Supercond. Sci. Technol. 21, 125008 (2008)

    Article  ADS  Google Scholar 

  18. K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  19. K. Halbach, J. Appl. Phys. 57, 3605 (1985)

    Article  ADS  Google Scholar 

  20. Z.Q. Zhu, D. Howe, Proc. IEE Electr. Power Appl. 148, 299 (2001)

    Article  Google Scholar 

  21. K. Nagashima, T. Otani, M. Murakami, Physica C 328, 137 (1999)

    Article  ADS  Google Scholar 

  22. G.G. Sotelo, A.C. Ferreira, R. de Andrade Jr., IEEE Trans. Appl. Supercond. 15, 2253 (2005)

    Article  Google Scholar 

  23. A.M. Campbell, Supercond. Sci. Technol. 15, 759 (2002)

    Article  ADS  Google Scholar 

  24. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, Appl. Phys. Lett. 92, 042505 (2008)

    Article  ADS  Google Scholar 

  25. A. Sanchez, N. Del-Valle, C. Navau, D.-X. Chen, J. Appl. Phys. 105, 023906 (2009)

    Article  ADS  Google Scholar 

  26. J. Wang, S. Wang, C. Deng, J. Zheng, H. Song, Q. He, Y. Zeng, Z. Deng, J. Li, G. Ma, H. Jing, Y. Huang, J. Zhang, Y. Lu, L. Liu, L. Wang, J. Zhang, L. Zhang, M. Liu, Y. Qin, Y. Zhang, IEEE Trans. Appl. Supercond. 17, 2091 (2007)

    Article  ADS  Google Scholar 

  27. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)

    Article  MATH  ADS  Google Scholar 

  28. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen, IEEE Trans. Appl. Supercond. 19, 2070 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del-Valle, N., Sanchez, A., Navau, C. et al. Magnet Guideways for Superconducting Maglevs: Comparison Between Halbach-Type and Conventional Arrangements of Permanent Magnets. J Low Temp Phys 162, 62–71 (2011). https://doi.org/10.1007/s10909-010-0225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0225-0

Keywords

Navigation