Skip to main content
Log in

Influence of Gd2O3 on ZnO Nanomaterials for the Enhancement of Catalytic Behavior

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Water pollution is one of the most significant threats for the present and future generation. Mostly, the water bodies are polluted by the industrial pollutants like rhodamine B (RhB) and methylene blue (MB). Examinations for the deprivation of RhB and MB dyes from the wastewater are crucial and were done in this article. In this study, the ZnO and Gd2O3 nanomaterials were synthesized by a two-step strategy of phytochemical-assisted green synthesis using the plant extract of Bryonia epigaea (Corallo carpus epigaeus). The synthesized nanomaterials were characterized for their optical absorbance properties and photoluminescence studies. The conducted XRD analysis confirmed that the particle obeyed the wurtzite structure with hexagonal phase. The FESEM analysis clearly indicated the rod-like structure of the ZnO nanomaterials and spherical shape of Gd2O3 nanomaterials. The degradation efficiency was remarkably higher for the ZnO/Gd2O3 nanocomposites which proved that the integration of Gd2O3 nanomaterials improved the catalytic activity of ZnO nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C.: Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3(2), 275–290 (2019). https://doi.org/10.1016/j.biori.2019.09.001

  2. Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., El Bachiri, A., El Harfi, A.: Textile finishing dyes and their impact on aquatic environs. Heliyon. 5(11), e02711 (2019). https://doi.org/10.1016/j.heliyon.2019.e02711

  3. Nicolai, S., Tralau, T., Luch, A., Pirow, R.: A scientific review of colorful textiles. J. Consum. Prot. Food Saf. 16, 5–17 (2021). https://doi.org/10.1007/s00003-020-01301-1

    Article  Google Scholar 

  4. Laysandra, L., Sari, M.W.M.K., Soetaredjo, F.E., Foe, K., Putro, J.N., Kurniawan, A., Ju, Y.H., Ismadji, S.: Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon 3(12), e00488 (2017). https://doi.org/10.1016/j.heliyon.2017.e00488

  5. Howland, R.H.: Methylene blue: the long and winding road from stain to brain: part 1. J. Psychosoc. Nurs. Ment. Health Serv. 54(9), 21–24 (2016). https://doi.org/10.3928/02793695-20160818-01

    Article  Google Scholar 

  6. Briffa, J., Sinagra, E., Blundell, R.: Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6(9), e04691 (2020). https://doi.org/10.1016/j.heliyon.2020.e04691

  7. Gaggero, E., Calza, P., Cerrato, E., Paganini, M.C.: Cerium-europium and erbium-modified ZnO and ZrO2 for photocatalytic water treatment applications: a review. Catalysts 11, (2021). https://doi.org/10.3390/catal11121520

  8. Sulistina, D.R., Martini, S.: The effect of rhodamine b on the cerebellum and brainstem tissue of Rattus norvegicus. J. Public Health Res. 9(2), (2020). https://doi.org/10.4081/jphr.2020.1812

  9. Marimuthu, S., Antonisamy, A.J., Malayandi, S., Rajendran, K., Tsai, P.C., Pugazhendhi, A. and Ponnusamy, V.K.: Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B: Biol. 205, (2020). https://doi.org/10.1016/j.jphotobiol.2020.111823

  10. Yaseen, D.A., Scholz, M.: Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019). https://doi.org/10.1007/s13762-018-2130-z

    Article  Google Scholar 

  11. Rahat, J., Umair Y.Q.: Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int. J. Environ. Res. Public Health 16, (2019). https://doi.org/10.3390/ijerph16112066

  12. Priecel, P., Lopez-Sanchez, J.A.: Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 7(1), 3–21 (2019). https://doi.org/10.1021/acssuschemeng.8b03286

  13. Zhu, Y.-J., Chen, F.: Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114(12), 6462–6555 (2014). https://doi.org/10.1021/cr400366s

    Article  Google Scholar 

  14. Sankaran, A., Kumaraguru, K., Balraj, B.: Studies on structural and optical behavior of CuO/Ag and CuO/Ag/Au nanocatalysts synthesized via a novel two step synthesis approach for enhancement of catalytic activity. J. Inorg. Organomet. Polym Mater. 31, 151–161 (2020). https://doi.org/10.1007/s10904-020-01655-x

    Article  Google Scholar 

  15. Jayapriya, M., Arulmozhi, M., Balraj, B.: Fabrication of silver nanoparticles using Musa aradisiacal for its synergistic combating effect on phytopathogens and free radical scavenging activity. IET Nanobiotechnol. 13(2), 134–143 (2019). https://doi.org/10.1049/iet-nbt.2018.5136

    Article  Google Scholar 

  16. Sridevi, A., Balraj, B., Senthilkumar, N., Venkatesan, G.K.D.: Synthesis of rGO/CuO/Ag ternary nanocomposites via hydrothermal approach for opto-electronics and supercapacitor applications. J Super Conduct. Novel Magnet. 33, 3501–3510 (2020). https://doi.org/10.1007/s10948-020-05594-z

  17. Maruthai, J., Muthukumarasamy, A., Baskaran, B.: Optical, biological and catalytic properties of ZnO incorporated MgO nanostructures using Musa paradisiaca bract extract. Ceram. Int. 44(11), 13152–13160 (2018). https://doi.org/10.1016/j.ceramint.2018.04.138

  18. Raizada, P., Sudhaik, A., Singh, P.: Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater. Sci. Energy Technol. 2(3), 509–525 (2019). https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  19. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  20. Dey, S., Mehta, N.S.: Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Curr. Res. Green Sustain. Chem. 3, 100022 (2020). https://doi.org/10.1016/j.crgsc.2020.100022

  21. Bejtka, K., Zeng, J., Sacco, A., Castellino, M., Hernández, S., Farkhondehfal, M.A., Savino, U., Ansaloni, S., Candido F.P., Chiodoni, A.: Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2(5), 3081–3091 (2019). https://doi.org/10.1021/acsaem.8b02048

  22. Mostafa, A.M., Yousef, S.A., Eisa, W.H., Ewaida, M.A., Al-Ashkar, E.A.: WO3 quantum dot: synthesis, characterization and catalytic activity. J. Mol. Struct. 1185, 351–356 (2019). https://doi.org/10.1016/j.molstruc.2019.03.007

    Article  ADS  Google Scholar 

  23. Wang, G., Huang, B., Li, Z., Lou, Z., Wang, Z., Dai, Y., Whangbo, M.H.: Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light, Sci. Rep. 5, 8544 (2015). https://doi.org/10.1038/srep08544

  24. Sankaran, A., Kumaraguru, K., Balraj, B., Sridevi, A., Magesh, R.: Investigation on catalytic activity of CuO/La2O3, CuO/Gd2O3 and CuO/La2O3/Gd2O3 nanocatalysts prepared via novel two step synthesis approach. Mater. Sci. Eng. B. 263, 114836 (2021). https://doi.org/10.1016/j.mseb.2020.114836

  25. Gamal A. M.: Hussein, Formation, characterization, and catalytic activity of gadolinium oxide. infrared spectroscopic studies. J. Phys. Chem. 98(38), 9657–9664 (1994). https://doi.org/10.1021/j100089a047

  26. Luo, Y., Habrioux, A., Calvillo, L., Granozzi, G., Alonso-Vante, N.: Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction. Chem. Phys. Chem 15(10), 2136–2144 (2014). https://doi.org/10.1002/cphc.201400042

    Article  Google Scholar 

  27. Barrera, A., Tzompantzi, F., Campa-Molina, J., Casillas, J.E., Perez-Hernandez, R., Ulloa-Godinez, S., Velasquez, C., Arenas-Alatorre, J.: Photocatalytic activity of Ag/Al2O3–Gd2O3 photocatalysts prepared by the sol–gel method in the degradation of 4-chlorophenol. RSC Adv. 8(6), 3108–3119 (2018). https://doi.org/10.1039/C7RA12665D

  28. Wong, F.H., Tiong, T.J., Leong, L.K., Lin, K.S., Yap, Y.H.: Effects of ZnO on characteristics and selectivity of coprecipitated Ni/ZnO/Al2O3 catalysts for partial hydrogenation of sunflower oil. Ind. Eng. Chem. Res. 57(9), 3163–3174 (2018). https://doi.org/10.1021/acs.iecr.7b04963

  29. Bulushev, D.A., Zacharska, M., Beloshapkin, S., Guo, Y.: Catalytic properties of PdZn/ZnO in formic acid decomposition for hydrogen production. Appl. Catal. A. 561, 96–103 (2018). https://doi.org/10.1016/j.apcata.2018.05.025

  30. Amuthameena, S., Dhayalini, K., Balraj, B., Siva, C., Senthilkumar, N.: Two step synthesis and electrochemical behavior of SnO2 nanomaterials for electrical energy storage devices, Elsevier. Inorg. Chem. Commun. 131, 108803 (2021). https://doi.org/10.1016/j.inoche.2021.108803

  31. Rajendran, N.K., George, B.P., Houreld, N.N. Abrahamse, H.: Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules 26(10), 3029 (2021). https://doi.org/10.3390/molecules26103029

  32. Yang, H., Li, X., Zhang, R., Huang, W., Guo, Y., Shen, Z., Mingxun, Yu., Zhang, Q., Wang, L.: Preparation and properties of Nd3+ doped Gd2O3 near-infrared phosphor. Ceram. Int. 47(6), 8510–8517 (2021). https://doi.org/10.1016/j.ceramint.2020.11.218

    Article  Google Scholar 

  33. Vivek, C., Balraj, B., Thangavel, S.: Structural, optical and electrical behavior of ZnO@Ag core-shell nanocomposite synthesized via novel plasmon-green mediated approach. J. Mater. Sci. Mater. Electron. 30(12), 11220–11230, (2019). https://doi.org/10.1007@s10854-019-01467-x

  34. Chen, C., Fang, J., Xu, C.: Ultrasonication mediated fabrication of glycine coated gadolinium oxide nanoparticles as MRI contrast agents. J. Clust. Sci. 32, 773–778 (2021). https://doi.org/10.1007/s10876-020-01836-1

    Article  Google Scholar 

  35. Zhao, J.-H., Liu, C.-J., Lv, Z.-H.: Photoluminescence of ZnO nanoparticles and nanorods. Optik. 127(3), 1421–1423 (2016). https://doi.org/10.1016/j.ijleo.2015.11.018

    Article  ADS  Google Scholar 

  36. Li, W., Wang, G., Chen, C., Liao, J., Li, Z.: were modidifed based from google scholar Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 7(1), 20 (2017). https://doi.org/10.3390/nano7010020

  37. Sahu, D., Panda, N.R., Acharya, B.S.: Effect of Gd doping on structure and photoluminescence properties of ZnO nanocrystals. Mater. Res. Express. 4(11), 114001 (2017)

  38. Rajangam, K., Amuthameena, S., Thangavel, S., Sanjanadevi, V.S., Balraj, B.: Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J. Mole. Struct. 1219, 128661 (2020). https://doi.org/10.1016/j.molstruc.2020.128661

  39. Balraj, B., Arulmozhi, M., Siva, C., Krithkadevi, R.: Synthesis, characterization and electrochemical analysis of hydrothermal synthesized AgO incorporated ZrO2 nanostructures. J. Mater. Sci. Mater. Electron. 28(8), 5906–5912 (2017). https://doi.org/10.1007/s10854-016-6264-9

    Article  Google Scholar 

  40. Al-Gaashani, R., Radiman, S., Daud, A.R., Tabet, N., Al-Douri, Y.: XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39(3), 2283–2292 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  Google Scholar 

  41. Wang, T., Jin, B., Jiao, Z., Gongxuan, Lu., Ye, J., Bi, Y.: Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. J. Mater. Chem. A 2, 15553–15559 (2014). https://doi.org/10.1039/C4TA02960G

    Article  Google Scholar 

  42. Dhanalakshmi, S., Senthil Kumar, P., Karuthapandian, S., Muthuraj, V., Prithivikumaran, N.: Design of Gd2O3 nanorods: a challenging photocatalyst for the degradation of neurotoxicity chloramphenicol drug. J. Mater. Sci. Mater. Electron. 30, 3744–3752 (2019). https://doi.org/10.1007/s10854-018-00656-4

  43. Bano, K., Mittal, S.K., Singh, P.P., Kaushal, S.: Sunlight driven photocatalytic degradation of organic pollutants using a MnV2O6/BiVO4 heterojunction: mechanistic perception and degradation pathways. Nanoscale Adv. 3, 6446–6458 (2021). https://doi.org/10.1039/D1NA00499A

  44. Huang, Z., Wang, L., Wu, H., Hu, H., Lin, H., Qin, L., Li, Q. Shape-controlled synthesis of CuS as a Fenton-like photocatalyst with high catalytic performance and stability. J. Alloys Compd. 896, 163045 (2022). https://doi.org/10.1016/j.jallcom.2021.163045

  45. Ghorai, K., Panda, A., Bhattacharjee, M., Mandal, D., Hossain, A., Bera, P., Gayen, A.: Facile synthesis of CuCr2O4/CeO2 nanocomposite: a new Fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes. Appl. Surf. Sci. 536, 147604 (2021). https://doi.org/10.1016/j.apsusc.2020.147604

  46. Othman, Z., Sinopoli, A., Mackey, H.R., Mahmoud, K.A.: Efficient photocatalytic degradation of organic dyes by AgNPs/TiO2/Ti3C2Tx MXene composites under UV and solar light. ACS Omega. 6(49), 33325–33338 (2021). https://doi.org/10.1021/acsomega.1c03189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Balraj or K. Kumaraguru.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, A., Amuthameena, S., Vimalraj, S. et al. Influence of Gd2O3 on ZnO Nanomaterials for the Enhancement of Catalytic Behavior. J Supercond Nov Magn 35, 1909–1919 (2022). https://doi.org/10.1007/s10948-022-06257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06257-x

Keywords

Navigation