Skip to main content
Log in

Magnetic Effect of the Occupied State of V Atom in Fe–V Alloy: First-Principles Calculation and Mössbauer Spectroscopy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In previous literatures, the influence of doping atoms in some suitable positions of Fe on the magnetic properties of iron-based alloys was briefly introduced, but the variation trend of the effects with doping atom content is not reported in detail. In the present work, Fe–V alloys were studied, and the effect of occupied state of V atom on the magnetic properties and charge transfer was investigated by the first-principles calculations and Mössbauer spectroscopy. The results show that the average magnetic moment of Fe atom increases with the increase of Fe–V bond. V atom has a great magnetic effect on the first (1NN-Fe) and second (2NN-Fe) nearest neighbors Fe. With the increase of V content, the magnetic effect of V atom on 1NN-Fe decreases gradually which is due to the hybridizations between Fe3d and V3d spin-down electrons, but that on 2NN-Fe is weaker when V content is low. As V content continues to increase, the strengthening of the interaction between 1NN-Fe and 2NN-Fe can lead to the enhancement of the ferromagnetism of 2NN-Fe. However, the magnetic properties of 2NN-Fe continue to decrease under the influence of V3d spin-down electrons when V content is too high. In addition, the results of charge transfer and magnetic properties of Fe–V alloys studied by Mössbauer spectroscopy are in good agreement with those by first-principles calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chandran, M., Iorio, L.E., Subramanian, P.R.: Effect of nitrogen on the magnetic moment of a-Fe and FeCo alloys from first-principle calculations. J. Appl. Phys. 101, 033912 (2007). https://doi.org/10.1063/1.2435814

    Article  ADS  Google Scholar 

  2. Yin, Z.P., Pickett, W.E.: Antiphase magnetic boundaries in iron-based superconductors: a first-principle density-functional theory study. Phys. Rev. B. 80, 144522 (2009). https://doi.org/10.1103/physrevb.80.144522

    Article  ADS  Google Scholar 

  3. Yang, Z.-h., Wang, X., Liu, L., Xu-ping, S.: Structural, magnetic and electronic properties of FeF2 by first-principle calculation. Trans. Nonferrous Met. Soc. China. 22(386-390), 386 (2012). https://doi.org/10.1016/s1003-6923(11)61188-6

    Article  Google Scholar 

  4. Jacob, B.J., Chapman, S.L., Dudarev, P., Ma, W.: The dynamic of magnetism in Fe-Cr alloys with Cr clustering. Phys. Rev. B. 99, 184413 (2019). https://doi.org/10.1103/PhysRevB.99.184413

    Article  ADS  Google Scholar 

  5. Sundararajan, V., Sahu, B.R., Kanhere, D.G., Panat, P.V., Das, G.P.: Cohesive, electronic and magnetic properties of the transition metal aluminides FeAl CoAl and NiAl. J. Phys. Condens. Matter. 7, 6019–6034 (1995). https://doi.org/10.1088/0953-8984/7/30/007

    Article  ADS  Google Scholar 

  6. Ren, J., Zhang, H., Cheng, X.-L.: Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 113, 2243–2250 (2013). https://doi.org/10.1002/qua.24442

    Article  Google Scholar 

  7. Shirai, M.: Electronic and magnetic properties of 3d transition-metal-doped GaAs. Phys. E. 10, 143–147 (2001). https://doi.org/10.1016/s1386-9477(01)00070-4

    Article  Google Scholar 

  8. Mahadevan, P., Solovyev, I.V., Terakura, K.: Low-temperature spin dynamics of doped manganites: roles of Mn t2g, Mn eg, and O 2p states. Phys. Rev. B Condens. Matter. 60, 11439 (1999). https://doi.org/10.1103/PhysRevB.60.11439

    Article  ADS  Google Scholar 

  9. Wang, S., Yu, J.: Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31, 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

    Article  Google Scholar 

  10. Li, J.-B., Liu, H.-X.: Theoretical research of diluted magnetic semiconductors: GaN monolayer doped with transition metal atoms. Superlattice. Microst. 120, 382–388 (2018). https://doi.org/10.1016/j.spmi.2018.06.008

    Article  ADS  Google Scholar 

  11. Cranshaw, E.: The disturbance produced in an iron lattice by Cr atoms and some other solutes (Mössbauer effect). J. Phys. F: Met. Phys. 2, 615–624 (1972). https://doi.org/10.1088/0305-4608/2/3/028

    Article  ADS  Google Scholar 

  12. Wertheim, G.K., Buchanan, D.N.E., Wernick, J.H.: 57Fe hyperfine fields in iron-co alloys. J. Appl. Phys. 42, 1602–1603 (1971). https://doi.org/10.1063/1.1660356

    Article  ADS  Google Scholar 

  13. Rubinstein, M.: Hyperfine field spectra of binary Fe-co alloys: nuclear magnetic resonance of 57Fe and 59Co. Phys. Rev. 172, 277–283 (1968). https://doi.org/10.1103/PhysRev.172.277

    Article  ADS  Google Scholar 

  14. Marcus, H., Fine, M.E., Schwartz, L.H.: Mössbauer-effect study of solid-solution and precipitated Fe-rich Fe-Mo alloys. J. Appl. Phys. 36, 4750–4758 (1967). https://doi.org/10.1063/1.1709214

    Article  ADS  Google Scholar 

  15. Sauer, W.E., Reynik, R.J.: Electronic and magnetic structure of dilute iron-base alloys. J. Appl. Phys. 42, 1604–1606 (1971). https://doi.org/10.1063/1.1660357

    Article  ADS  Google Scholar 

  16. Môri, N., Mitsui, T.: Magnetic properties on σ-phase of Fe-V alloys. J. Phys. Soc. Jpn. 22, 931 (2007). https://doi.org/10.1143/JPSJ.22.931

    Article  ADS  Google Scholar 

  17. Nunes, C.B., Paduani, C., dos Santos, C.T., Izario, H.J., Coelho, A.A., Ghivelder, L.: Magnetostriction of Fe100-xVx alloys for 5.2<x<40.7. J. Alloys Compd. 553, 233–238 (2003). https://doi.org/10.1016/j.jallcom.2012.11.034

    Article  Google Scholar 

  18. Cieslak, J., Tobola, J., Dubiel, S.M.: Theoretical study of magnetic properties and hyperfine interactions in σ-phase Fe-V alloys. Intermetallics. 22, 7–12 (2012). https://doi.org/10.1016/j.intermet.2011.10.015

    Article  Google Scholar 

  19. Liu, H.-Y., Wang, J.-J., Jin, J.-F., Liu, C.-M., Zhang, H.-Y.: A first-principles investigation on the effect of the divacancy defect on magnetic properties of Fe94V6 alloy. J. Appl. Phys. 124, 163904 (2018). https://doi.org/10.1063/1.5042012

    Article  ADS  Google Scholar 

  20. Shi, H., Huang, Z.B., Tse, J.S., Lin, H.Q.: Magnetic behavior of Fe(se,Te) systems: first-principles calculations. J. Appl. Phys. 110, 3296 (2011). https://doi.org/10.1063/1.3624759

    Article  Google Scholar 

  21. Gorbunova, M.A., Sein, I.R., Makurin, Y.N., Kiiko, V.S., Ivanovskii, A.L.: Electronic and magnetic properties of beryllium oxide with 3d impurities from first-principles calculations. Physica B. 400, 47–52 (2007). https://doi.org/10.1016/j.physb.2007.06.017

    Article  ADS  Google Scholar 

  22. Zhang, H., Punkkinen, M.P.J., Johansson, B., Vitos, L.: Elastic parameters of paramagnetic iron-based alloys from first-principles calculations. Phys. Rev. B. 85, 054107 (2012). https://doi.org/10.1103/PhysRevB.85.054107

    Article  ADS  Google Scholar 

  23. Zhang, D., Shangguan, Q., Liu, F., Zhang, M.: Site preference of alloying elements in DO22-Ni3V phase: phase-field and first-principles study. Met. Mater. Int. 21, 623–627 (2015). https://doi.org/10.1007/s12540-015-5027-0

    Article  Google Scholar 

  24. Qin, G., Wang, X., Zheng, J., Kong, C., Zeng, B.: First-principles investigation of the electronic and magnetic properties of ZnO nanosheet with intrinsic defects. Comput. Mater. Sci. 81, 259–263 (2014). https://doi.org/10.1016/j.commatsci.2013.08.018

    Article  Google Scholar 

  25. Idczak, R., Kaśków, B., Konieczny, R., Chojcan, J.: Mössbauer study of vacancy-solute pairs in iron-based binary alloys. Phys. B Condens. Matter. 577, 411794 (2020). https://doi.org/10.1016/j.physb.2019.411794

    Article  Google Scholar 

  26. Chojcan, J.: Interactions between impurity atoms of 3d transition metals dissolved in iron. J. Alloys. Comp. 264, 50–53 (1998). https://doi.org/10.1016/S0925-8388(97)00264-8

    Article  Google Scholar 

  27. Idczak, R., Konieczny, R., Chojcan, J.: An enthalpy of solution of chromium in iron studied with 57Fe Mössbauer spectroscopy. Physica B. 407, 2078–2081 (2012). https://doi.org/10.1016/j.physb.2012.02.009

    Article  ADS  Google Scholar 

  28. Das, T.P.: Calculation of magnetic and electric hyperfine fields in metals. Phys. Scr. 11, 121 (2007). https://doi.org/10.1088/0031-8949/11/3-4/003

    Article  ADS  Google Scholar 

  29. Dubiel, S.M., Zukrowski, J.: Mossbauer effect study of charge and spin transfer in Fe-Cr. J. Magn. Magn. Mater. 23, 214–228 (1981). https://doi.org/10.1016/0304-8853(81)90137-2

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support by the National Natural Science Foundation of China (Grant No. 51471048), the Basic Research Program of Key Laboratory of Liaoning Province (Grant No. LZ2015035), and 111Project (Grant No. B20029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-J. Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HY., Wang, JJ., Jin, JF. et al. Magnetic Effect of the Occupied State of V Atom in Fe–V Alloy: First-Principles Calculation and Mössbauer Spectroscopy. J Supercond Nov Magn 34, 1425–1433 (2021). https://doi.org/10.1007/s10948-021-05860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05860-8

Keywords

Navigation