Skip to main content
Log in

Improved Electrical Properties Displayed by Mg2+-Substituted Cobalt Ferrite Nano Particles, Prepared Via Co-precipitation Route

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this reported study, magnesium-substituted cobalt ferrite nanoparticles (Co1−xMgxFe2O4, x = 0.0, 0.20, 0.35, 0.50) have been investigated. The samples were prepared via a wet chemical co-precipitation route and were calcinated at 800 °C for 6 h. The structural, electrical, and dielectric properties of these samples were studied using XRD, SEM, FTIR, impedance analyzer, and LCR meter. The XRD diffractograms established the development of FCC spinel arrangement with decreasing crystallite size from 20 to 30 nm without any additional impurity peak confirming the purity of the samples synthesized. The FTIR spectra established the existence of tetrahedral (A) and octahedral (B) lattice sites in the structural arrangement. The SEM images showed uniform nano-spherical particle formation with minimum porosity. No extra phase or impurity was found, confirming the effectiveness of the co-precipitation route. The dielectric properties of the synthesized samples measured at ambiance temperature against frequency range of 103 Hz to 5 MHz showed massive enhancement of dielectric constant (on the order of 104 at 100 Hz) which was comparable to traditional ceramics (having a dielectric constant in the range of 104–106), which are often rendered suitable for capacitor applications. Furthermore, the low values of dielectric loss tangent at high frequencies verified its potential usage in microwave applications. A significant contribution of both long- and short-range order in hopping as well as an increase in grain boundary density was confirmed by complex electric modulus analysis. The DC electrical resistivity measurement against increasing temperatures was done, showing a typical decreasing trend with increasing temperature, validating the semiconductor nature of synthesized nanoparticles with varying compositions. The drift mobility was further calculated from the DC resistivity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gao, Y., Wang, L., Zhang, W., Yang, X., Ma, Y., Shao, J., Li, Y.: Ni-Co nanosheets supported on conductive “core” for integrated supercapacitor with high performance. Electrochim. Acta. 201, 260–267 (2016). https://doi.org/10.1016/j.electacta.2016.03.202

    Article  Google Scholar 

  2. Hareesh, K., Shateesh, B., Joshi, R.P., Dahiwale, S.S., Bhoraskar, V.N., Haram, S.K., Dhole, S.D.: PEDOT:PSS wrapped NiFe2O4/rGO tertiary nanocomposite for the super-capacitor applications. Electrochim. Acta. 201, 106–116 (2016). https://doi.org/10.1016/j.electacta.2016.03.205

    Article  Google Scholar 

  3. Yifeng, G.: Analysis and design of the super capacitor monitoring system of hybrid electric vehicles. Procedia Eng. 15, 90–94 (2011). https://doi.org/10.1016/j.proeng.2011.08.019

    Article  Google Scholar 

  4. Zaag, P.J.v.d.: Ferrites. Reference Module in Materials Science and Materials Engineering, 3033–3037 (2016). https://doi.org/10.1016/B978-0-12-803581-8.02337-7

  5. Amiri, S., Shokrollahi, H.: The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C Mater Biol Appl. 33(1), 1–8 (2013). https://doi.org/10.1016/j.msec.2012.09.003

    Article  Google Scholar 

  6. Praveena, K., Sadhana, K., Bharadwaj, S., Murthy, S.R.: Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J. Magn. Magn. Mater. 321(16), 2433–2437 (2009). https://doi.org/10.1016/j.jmmm.2009.02.138

    Article  ADS  Google Scholar 

  7. Yadav, A.K., Singh, R.K., Singh, P.: Fabrication of lanthanum ferrite based liquefied petroleum gas sensor. Sensors Actuators B Chem. 229, 25–30 (2016)

    Article  Google Scholar 

  8. Noguchi, H., Oyanagi, M., Doshita, H.: Magnetic-particulate recording media: advanced. In: Reference Module in Materials Science and Materials Engineering. Elsevier, (2016)

  9. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V., Purushotham, Y.: Structural and magnetic properties of Ni0.5 Zn0.5 Alx Fe2−x O4 nano ferrite system. Mater Chem Phys. 148(3), 585–591 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.019

    Article  Google Scholar 

  10. Kumar, L., Kar, M.: Influence of Al3+ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323(15), 2042–2048 (2011). https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  ADS  Google Scholar 

  11. Magnetic measurements on ferrite materials and components. In: Modern Ferrite Technology. pp. 403–425. Springer US, Boston, MA (2006)

  12. Gul, I.H., Maqsood, A.: Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465(1), 227–231 (2008). https://doi.org/10.1016/j.jallcom.2007.11.006

    Article  Google Scholar 

  13. Shirsath, S.E., Toksha, B.G., Kadam, R.H., Patange, S.M., Mane, D.R., Jangam, G.S., Ghasemi, A.: Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids. 71(12), 1669–1675 (2010). https://doi.org/10.1016/j.jpcs.2010.08.016

    Article  ADS  Google Scholar 

  14. Anwar, H., Maqsood, A., Gul, I.H.: Effect of synthesis on structural and magnetic properties of cobalt doped Mn–Zn nano ferrites. J. Alloys Compd. 626, 410–414 (2015). https://doi.org/10.1016/j.jallcom.2014.11.177

    Article  Google Scholar 

  15. Amer, M.A.: Spectral studies of the ferrite system Zn0.5Cu0.5AlxFe2−xO4. Hyperfine Interact. 131(1), 29–42 (2000). https://doi.org/10.1023/a:1011017526005

    Article  ADS  Google Scholar 

  16. Ahmad, R., Hussain Gul, I., Zarrar, M., Anwar, H., Khan Niazi, M.B., Khan, A.: Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application. J. Magn. Magn. Mater. 405, 28–35 (2016). https://doi.org/10.1016/j.jmmm.2015.12.019

    Article  ADS  Google Scholar 

  17. Javed Iqbal, M., Naeem Ashiq, M., Hussain Gul, I.: Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 322(13), 1720–1726 (2010). https://doi.org/10.1016/j.jmmm.2009.12.013

    Article  ADS  Google Scholar 

  18. Molak, A., Paluch, M., Pawlus, S., Klimontko, J., Ujma, Z., Gruszka, I.: Electric modulus approach to the analysis of electric relaxation in highly conducting (Na 0.75 Bi 0.25 )(Mn 0.25 Nb 0.75 )O 3 ceramics. J Phys D Appl Phys. 38(9), 1450 (2005)

    Article  ADS  Google Scholar 

  19. Moradmard, H., Farjami Shayesteh, S., Tohidi, P., Abbas, Z., Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015). https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  Google Scholar 

  20. Deraz, N.M.: Effects of magnesia addition on structural, morphological and magnetic properties of nano-crystalline nickel ferrite system. Ceram. Int. 38(1), 511–516 (2012). https://doi.org/10.1016/j.ceramint.2011.07.036

    Article  Google Scholar 

  21. Gul, I.H., Ahmed, W., Maqsood, A.: Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320(3–4), 270–275 (2008). https://doi.org/10.1016/j.jmmm.2007.05.032

    Article  ADS  Google Scholar 

  22. Hamedoun, M., Benyoussef, A., Bousmina, M.: Magnetic properties and phase diagram of ZnxNi1−xFe2O4: high-temperature series expansions. J. Magn. Magn. Mater. 322(21), 3227–3235 (2010). https://doi.org/10.1016/j.jmmm.2010.05.030

    Article  ADS  Google Scholar 

  23. Vemuri, R., Raju, G., Gnana Kiran, M., Prasad, M.S.N.A., Rajesh, E., Pavan Kumar, G., Murali, N.: Effect on structural and magnetic properties of Mg2+ substituted cobalt nano ferrite. Results Phys. 12, 947–952 (2019). https://doi.org/10.1016/j.rinp.2018.12.032

    Article  ADS  Google Scholar 

  24. Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99(6), 1727–1735 (1955). https://doi.org/10.1103/PhysRev.99.1727

    Article  ADS  Google Scholar 

  25. Mirzaee, S., Shayesteh, S.F., Mahdavifar, S.: Synthesis and characterization of cubic omega-3-coated cobalt ferrite nanoparticles. J. Supercond. Nov. Magn. 27(7), 1781–1785 (2014). https://doi.org/10.1007/s10948-014-2512-5

    Article  Google Scholar 

  26. Szczygieł, I., Winiarska, K.: Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J. Therm. Anal. Calorim. 115(1), 471–477 (2013). https://doi.org/10.1007/s10973-013-3281-2

    Article  Google Scholar 

  27. Kaur, M., Jain, P., Singh, M.: Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0.6-xMgxZn0.4 Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles. Mater. Chem. Phys. 162, 332–339 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.075

    Article  Google Scholar 

  28. Safi, R., Ghasemi, A., Shoja-Razavi, R., Tavousi, M.: The role of pH on the particle size and magnetic consequence of cobalt ferrite. J. Magn. Magn. Mater. 396, 288–294 (2015). https://doi.org/10.1016/j.jmmm.2015.08.022

    Article  ADS  Google Scholar 

  29. Asif Iqbal, M., Islam, M.U., Ali, I., Khan, M.A., Sadiq, I., Ali, I.: High frequency dielectric properties of Eu+3-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method. J. Alloys Compd. 586, 404–410 (2014). https://doi.org/10.1016/j.jallcom.2013.10.066

    Article  Google Scholar 

  30. Ramesh, B., Ravinder, D.: Electrical properties of Li–Mn ferrites. Mater. Lett. 62(14), 2043–2046 (2008). https://doi.org/10.1016/j.matlet.2007.11.010

    Article  Google Scholar 

  31. Druc, A.C., Borhan, A.I., Diaconu, A., Iordan, A.R., Nedelcu, G.G., Leontie, L., Palamaru, M.N.: How cobalt ions substitution changes the structure and dielectric properties of magnesium ferrite? Ceram. Int. 40(8), 13573–13578 (2014). https://doi.org/10.1016/j.ceramint.2014.05.071

    Article  Google Scholar 

  32. Nikumbh, A.K., Pawar, R.A., Nighot, D.V., Gugale, G.S., Sangale, M.D., Khanvilkar, M.B., Nagawade, A.V.: Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014). https://doi.org/10.1016/j.jmmm.2013.11.052

    Article  ADS  Google Scholar 

  33. Dar, M.A., Verma, V., Gairola, S.P., Siddiqui, W.A., Singh, R.K., Kotnala, R.K.: Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258(14), 5342–5347 (2012). https://doi.org/10.1016/j.apsusc.2012.01.158

    Article  ADS  Google Scholar 

  34. Thomas, N., Jithin, P.V., Sudheesh, V.D., Sebastian, V.: Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram. Int. 43(9), 7305–7310 (2017). https://doi.org/10.1016/j.ceramint.2017.03.031

    Article  Google Scholar 

  35. Sun, L., Zhang, R., Ni, Q., Cao, E., Hao, W., Zhang, Y., Ju, L.: Magnetic and dielectric properties of MgxCo1-xFe2O4 ferrites prepared by the sol-gel method. Phys. B Condens. Matter. 545, 4–11 (2018). https://doi.org/10.1016/j.physb.2018.05.030

    Article  ADS  Google Scholar 

  36. Vinayak, V., Khirade, P.P., Birajdar, S.D., Alange, R.C., Jadhav, K.M.: Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+-substituted cobalt spinel ferrite. J. Supercond. Nov. Magn. 28(11), 3351–3356 (2015). https://doi.org/10.1007/s10948-015-3159-6

    Article  Google Scholar 

  37. Verma, K., Kumar, A., Varshney, D.: Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. Curr. Appl. Phys. 13(3), 467–473 (2013)

    Article  ADS  Google Scholar 

  38. Hashim, M., Meena, S., Kotnala, R., Shirsath, S.E., Bhatt, P., Kumar, S., Şentürk, E., Kumar, R., Gupta, N.: Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0. 5Zn0. 5− xCoxFe2O4 nanocrystalline ferrite. J. Magn. Magn. Mater. 360, 21–33 (2014)

    Article  ADS  Google Scholar 

  39. Jadhav, G.L., More, S., Kale, C., Jadhav, K.: Effect of magnesium substitution on the structural, morphological, optical and wettability properties of cobalt ferrite thin films. Phys. B Condens. Matter. 555, 61–68 (2019)

    Article  ADS  Google Scholar 

  40. Feng, Y.B., Qiu, T., Shen, C.Y.: Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318(1–2), 8–13 (2007). https://doi.org/10.1016/j.jmmm.2007.04.012

    Article  ADS  Google Scholar 

  41. Ortega, N., Kumar, A., Bhattacharya, P., Majumder, S.B., Katiyar, R.S.: Impedance spectroscopy of multiferroic PbZrxTi1−xO3∕CoFe2O4layered thin films. Phys Rev B. 77(1), (2008). https://doi.org/10.1103/PhysRevB.77.014111

  42. Funke, K.: Jump relaxation in solid electrolytes. Prog Solid State Chem. 22(2), 111–195 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Article  Google Scholar 

  43. Chavan, A.R., Birajdar, S.D., Chilwar, R.R., Jadhav, K.M.: Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. J. Alloys Compd. 735, 2287–2297 (2018). https://doi.org/10.1016/j.jallcom.2017.11.326

    Article  Google Scholar 

  44. Belal Hossen, M., Akther Hossain, A.K.M.: Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram. 4(3), 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  Google Scholar 

  45. Irfan, M.: Hysteresis and electric modulus analysis of Y3+ doped MnNi-Y-type hexagonal ferrite. Ceramics - Silikaty, 34–40 (2016). https://doi.org/10.13168/cs.2016.0005

  46. Gul, I.H., Amin, F., Abbasi, A.Z., Anis-ur-Rehman, M., Maqsood, A.: Physical and magnetic characterization of co-precipitated nanosize Co–Ni ferrites. Scr. Mater. 56(6), 497–500 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Hussain Gul.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z., Gul, I.H. & Malik, A. Improved Electrical Properties Displayed by Mg2+-Substituted Cobalt Ferrite Nano Particles, Prepared Via Co-precipitation Route. J Supercond Nov Magn 33, 3133–3144 (2020). https://doi.org/10.1007/s10948-020-05565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05565-4

Keywords

Navigation