Skip to main content
Log in

Correlation Between Structural, Magnetic and Dielectric Properties of Microwave Sintered Ni-Zn-Al Nanoferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A series of diamagnetic aluminum (Al3+) substituted Ni-Zn Nanoferrites have been synthesized using sol-gel auto combustion route. Structural, magnetic, and dielectric properties were systematically studied and reported with respect to Al3+ substitution in host Fe3+ ions. X-ray diffraction (XRD) and infrared spectroscopy (IR) measurements confirm the presence of Al3+ ions at both A and B sites. Cation distribution proposed from XRD and IR correlates with magnetic and dielectric results. It is observed that Al3+ ions are distributed in to tetrahedral and octahedral sub-lattices. The saturation magnetization varies between 58.5 and 44.2 emu/g with increasing Al3+ substitution. This decrease in magnetization is ascribed to presence of the non-collinear spin (canted spin) structure in octahedral sub-lattice. Dielectric constant decreased and a significant improvement in AC resistivity is observed with Al3+ substitution. The observed variations are accounted on the basis of cation distribution in spinel ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Subramaniana, A.P., Jaganathan, S.K., Manikandanb, A., Pandiarajc, K.N., Nd, G., Supriyanto, E.: Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv. 6, 48294–48314 (2016)

    Article  Google Scholar 

  2. Prasad, B.B.V.S.V.: Cation distribution, structural and electric studies on cadmium substituted nickel–zinc ferrite. Mod. Phys. Lett. B. 28, 1450155 (2014)

    Article  ADS  Google Scholar 

  3. Abraham, A.G., Manikandan, A., Manikandan, E., Jaganathan, S.K., Baykal, A., Renganathan, P.S.: Enhanced opto-magneto properties of NixMg1–xFe2O4 (0.0≤ x≤ 1.0) ferrites nano-catalysts. Jl of Nanoelec. and Optoele. 12, 1326–1333 (2017)

    Article  Google Scholar 

  4. Mary Jacinth, A., Manikandan, A.: Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J of nanosci. and nanotech. 15, 9732–9740 (2015)

    Article  Google Scholar 

  5. Babu, B.R., TetianaTatarchuk: Elastic properties and antistructural modeling for Nickel-Zinc ferrite-aluminates. Mat. Chem. and Phy. 7, 534–541 (2018)

  6. Maria, M., Soniaa, L., Ananda, B., Pauline, A.M.: Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles. Cer. Int. 44, 22068–22079 (2018)

    Article  Google Scholar 

  7. Siva Ram Prasad, M., Prasad, B.B.V.S.V., Rajesh, B., Rao, K.H., Ramesh, K.V.: Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel–zinc ferrite system. J. Magn. Magn. Mater. 323, 2115–2121 (2011)

    Article  ADS  Google Scholar 

  8. Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., Sayed, H.S.E., Almessierec, M.A., Sözerif, H., Shirsath, E., Ercan, I., Tatarchuk, T., Bououdina, M., Macyk, W., Shyichuk, O., Paliychuk, N., Yaremiy, I., Al-Najar, B., Pacia, M.: Nano.Res. Lett. 12, 141 (2017)

    Article  Google Scholar 

  9. A.Baykal: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Cer. Int. 44, 14242–14250 (2018)

    Article  Google Scholar 

  10. Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Kumar, R.T., Kumar, S., Jaganathan, A.B.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic J. Magn. Magn. Mater. 476, 157–165 (2019)

    Article  ADS  Google Scholar 

  11. GodlynAbraham, A., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykali, A., Renganathan, P.S.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  ADS  Google Scholar 

  12. Hema, E., Manikandan, A., Karthik, P., Arul Antony, S., Venkatraman, B.R.: A novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: Structural, morphological, Opto-magnetic and catalytic properties. J. Supercond. and Novel Magn. 28, 2539–2552 (2015)

    Article  Google Scholar 

  13. Manikandan, A., Durka, M., Arul Antony, S.: J. Supercond. and Novel Magn. 27, 2841–2857 (2014)

    Article  Google Scholar 

  14. Padmapriya, G., Manikandan, A., Krishnasamy, V., Kumar, S., Jaganathan, S., Arul, A.: Spinel NixZn1− xFe2O4 (0.0≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J. Mol. Stru. 1119, 39–47 (2016)

    Article  ADS  Google Scholar 

  15. Barathiraja, C., Manikandan, A., Uduman Mohideen, A.M., Jayasree, S., Arul Antony, S.: Magnetically recyclable spinel MnxNi1−xFe2O4 (x= 0.0–0.5) Nano-photocatalysts: Structural, morphological and Opto-magnetic properties. J. Supercond. and Novel Magn. 29, 477–486 (2016)

    Article  Google Scholar 

  16. Biasi, R.S., Santos, H.F., distribution, C.: Cation distribution, saturation magnetization and magnetocrystalline anisotropy of mixed ferrite NiAlxFe2− xO4 nanoparticles. Ceram. Int. 43, 4557–4561 (2017)

    Article  Google Scholar 

  17. Verma, S., Chand, J., Batoo, K.M., Singh, M.: Cation distribution and Mössbauer spectral studies of Mg0. 2Mn0. 5Ni0. 3InxFe2− xO4 ferrites (x= 0.0, 0.05 and 0.10). J. Alloys Compd. 565, 148 (2013)

    Article  Google Scholar 

  18. B.G. Toksha, Sagar E. Shirsath, M.L Mane, K.M. Jadhav Ceram Inter. 43, 14347–14353 (2017)

  19. Hashim, M., Kumar, S., Ali, S., Koo, B.H., Chung, H., Kumar, R.: Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511, 107–114 (2012)

    Article  Google Scholar 

  20. Singhal, S., Sharma, R., Namgyal, T., Jauhar, S., Bhukal, S.K.: Structural, electrical and magnetic properties of Co0. 5Zn0. 5AlxFe2− xO4 (x= 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared via sol–gel route. J. Ceram. Int. 38, 2773 (2012)

    Article  Google Scholar 

  21. Lakshman, A., Rao, K.H., Mendiratta, R.G.: Magnetic properties of In3+ and Cr3+ substituted mg–Mn ferrites. J. Magn. Magn. Mater. 250, 92 (2002)

    Article  ADS  Google Scholar 

  22. Verma, A., Goel, T.C., Mendiratta, R.G., Gupta, R.G.: High-resistivity nickel–zinc ferrites by the citrate precursor method. J.Magn. Magn. Mater. 192, 271–276 (1999)

    Article  ADS  Google Scholar 

  23. Yue, Z., Zhou, J., Li, L., Gui, Z.: Effects of MnO2 on the electromagnetic properties of NiCuZn ferrites prepared by sol-gel auto-combustion. J. Magn. Magn. Mater. 233, 224–229 (2001)

    Article  ADS  Google Scholar 

  24. Hakim, M.A., Saha, D.K., Kibria, A.K.M.F.: Synthesis and temperature dependent structural study of nanocrystalline mg-ferrite materials, bang. J. Phys. 3, 57 (2007)

    Google Scholar 

  25. Zahi, S., Hashim, M., Daud, A.R.: Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J. Magn. Magn. Mater. 308, 177 (2007)

    Article  ADS  Google Scholar 

  26. Li, X., Wang, G.: Low-temperature synthesis and growth of superparamagnetic Zn0. 5Ni0. 5Fe2O4 nanosized particles. J. Magn. Magn. Mater. 321, 1276–1279 (2009)

    Article  ADS  Google Scholar 

  27. Gorter, E.W.: Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature. 165, 798 (1950)

    Article  ADS  Google Scholar 

  28. Singhal, S., Barthwal, S.K., Chandra, K.: Structural, magnetic and Mössbauer spectral studies of nanosize aluminum substituted nickel zinc ferrites. J. Magn. Magn. Mater. 296, 94–103 (2006)

    Article  ADS  Google Scholar 

  29. Rais, A., Gismelseed, A.M., Al-Omari, I.A.: Cation distribution and magnetic properties of nickel-chromium ferrites NiCrxFe2−xO4(0≤x≤1.4). Phy. Sta. Sol. B. 242, 1497–1503 (2005)

    Article  ADS  Google Scholar 

  30. Thummer, K.P., Chhantbar, M.C., Modi, K.B., Baldha, G.J., Joshi, H.H.: Localized canted spin behaviour in ZnxMg1. 5− xMn0. 5FeO4spinelferritesystem. J. Magn. and Magn. Mater. 280, 23–30 (2004)

    Article  ADS  Google Scholar 

  31. Ramarao, K., Rajesh Babu, B., Kishore Babu, B., Veeraiah, V., Ramarao, S.D., Rajasekhar, K., Venkateswara Rao, A.: Composition dependence of structural, magnetic and electrical properties of co substituted magnesium ferrite. Physica B. 528, 18–23 (2018)

    Article  ADS  Google Scholar 

  32. Sonal Singhal, S., Barthwal, K., Chandra, K.: cation distribution in the nano size aluminium substituted cobalt ferrites using XRD, magnetic and Mössbauer spectral studies. Ind. J Pure & Appl. Phy. 45, 821–825 (2007)

    Google Scholar 

  33. Singhal, S., Sharma, R., Namgyal, T., Jauhar, S., Bhukal, S., Kaur, J.: Structural, electrical and magnetic properties of Co0. 5Zn0. 5AlxFe2− xO4 (x= 0, 0.2, 0.4, 0.6, 0.8 and 1.0) prepared via sol–gel route. Cer. Int. 38, 2773–2778 (2012)

    Article  Google Scholar 

  34. P.Chandra: Effect of aluminium substitution on electrical conductivity and physical properties of zinc ferrite. J.Mater.Sci.Lett. 6, 651–652 (1987)

    Article  Google Scholar 

  35. A. Silambarasu,A. Manikandan, K.Balakrishnan: Room-temperature Superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 Nanocatalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017)

    Article  Google Scholar 

  36. Manikandan, A., Hema, E., Durka, M., Seevakan, K., Alagesan, T., Antony, S.A.: Room temperature ferromagnetism of magnetically recyclable Photocatalyst of Cu1−xMnxFe2O4-TiO2 (0.0 ≤ x ≤ 0.5) nanocomposites. J. Supercond. Nov. Magn. 28, 1783–1795 (2015)

    Article  Google Scholar 

  37. Mays, C.W., Vermaak, J.S., Kuhlmann-Wilsdorf, D.: On surface stress and surface tension: II. Determination of the surface stress of gold. Surf. Sci. 12, 134–140 (1968)

    Article  ADS  Google Scholar 

  38. Solliard, C., Flueli, M.: Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf. Sci. 156, 487–494 (1985)

    Article  ADS  Google Scholar 

  39. Fukuhara, M.: Lattice expansion of nanoscale compound particles. Phys. Lett. A. 313, 427–430 (2003)

    Article  ADS  Google Scholar 

  40. Wei, Q.-m., Li, J.-b., Chen, Y.-j., Han, Y.-s.: X-ray study of cation distribution in NiMn1− xFe2− xO4 ferrites. Mat. Charac. 47, 247–252 (2001)

    Article  Google Scholar 

  41. Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1995)

    Article  ADS  Google Scholar 

  42. Chandrasekaran, G., Selvanden, S., Manivannane, K., Mat, J.: Sci. and Mat. Ele. 15, 15 (2004)

    Article  Google Scholar 

  43. Franco, A., Silva, M.: Cr3+ and Al3+ co-substituted zinc ferrite: Structural analysis, magnetic and electrical properties. J. Appl. Phys. 109, 07B503 (2011)

    Article  Google Scholar 

  44. Albuquerque, A.S., Ardisson, J.D., Macedo, W.A.A., Alves, M.C.M.: Nanosized powders of Ni-Zn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87, 4352 (2000)

    Article  ADS  Google Scholar 

  45. Sharma, S., Sharma, N.D.: Mössbauer, X-ray and magnetization studies of ZnAlxFe2-xO4 system. Ind. J. Pure & Appl. Phy. 44, 220–226 (2006)

    Google Scholar 

  46. Yafet, Y., Kittel, C.: Antiferromagnetic arrangements in ferrites. Phy.Rev. 90(295), (1952)

  47. Babu, B.R., Ramesh, K.V., Prasad, R., Ramesh, K.V.: Effect on structural and magnetic properties of aluminum substituted Ni–Zn nanoferrite system prepared via citrate-gel route. Int. J. Mod. Phys. B. 29, 1550032 (2015)

    Article  ADS  Google Scholar 

  48. Tetiana Tatarchuk, Mohamed Bououdina, J. Judith Vijaya, and L. John Kennedy O. Fesenko, L. Yatsenko (eds.), Nanophysics, Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics 195

  49. Tatarchuk, T.R., Bououdina, M., Paliychuk, N.D., Yaremiy, I.P., Moklyak, V.V.: Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys and Comp. 694, 777 (2017)

    Article  Google Scholar 

  50. Babu, B.R., Ramesh, K.V., Prasad, R., Structural, M.S.: Magnetic, and dielectric properties of Ni0.5Zn0.5AlxFe2−xO4 Nanoferrites. J. Supercond. Nov. Magn. 29, 939 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Ega.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ega, C.S., Babu, B.R., Ramesh, K.V. et al. Correlation Between Structural, Magnetic and Dielectric Properties of Microwave Sintered Ni-Zn-Al Nanoferrites. J Supercond Nov Magn 32, 3525–3534 (2019). https://doi.org/10.1007/s10948-019-5097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5097-1

Keywords

Navigation