Skip to main content
Log in

Spin Compensation Temperatures of a Mixed Spin Blume-Capel Ising Ferrimagnetic System: a Study of Low-Temperature Molecular Magnet

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have investigated the magnetic phase transitions and compensation points in a series of molecular-based magnetic material using the Oguchi approximation. The considered system is a mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnet with different single-ion anisotropies on both simple cubic and face-centered cubic lattices respectively. The minimized free energy of the mixed spin ferrimagnetic model has been used to extrapolate the equilibrium magnetizations and the compensation temperatures. The crystal field dependence of multicompensation phenomenon has mainly been investigated. The present study produces new results regarding the face-centered cubic lattice, which encourages future experimental works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P., Verdaguer, M.: A room-temperature organometallic magnet based on Prussian blue. Nature. 378, 701–703 (1995). https://doi.org/10.1038/378701a0

    Article  ADS  Google Scholar 

  2. Miller, J.S., Drillon, M.: Magnetism: Molecules to Materials IV, John Wiley & Sons (2006)

  3. De La Espriella, N., Buendía, G.M.: Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model. J. Phys. Condens. Matter. 23, 176003 (2011). https://doi.org/10.1088/0953-8984/23/17/176003

    Article  ADS  Google Scholar 

  4. Deviren, B., Keskin, M.: Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system. J. Stat. Phys. 140, 934–947 (2010). https://doi.org/10.1007/s10955-010-0025-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Albayrak, E.: The critical and compensation temperatures for the mixed spin-3/2 and spin-2 Ising model. Phys. B Condens. Matter. 391, 47–53 (2007). https://doi.org/10.1016/j.physb.2006.08.045

    Article  ADS  Google Scholar 

  6. Zhang, Q., Wei, G., Gu, Y.: The study of the phase diagram and internal energy of the mixed spin-3/2 and spin-5/2 ferrimagnetic. Ising system with interlayer coupling by effective-field theory; a simple approach of calculating internal energy, 932, 924–932 (2005). doi:https://doi.org/10.1002/pssb.200402104

    Article  ADS  Google Scholar 

  7. De La Espriella, N., Buendía, G.M.: Ground state phase diagrams for the mixed Ising 3 / 2 and 5 / 2 spin model. Phys. A: Stat. Mech. Appl. 389, 2725–2732 (2010). https://doi.org/10.1016/j.physa.2010.03.022

    Article  Google Scholar 

  8. Albayrak, E., Yigit, A.: The phase diagrams of the mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice. Phys. Stat. Solid. Bas. Res. 244, 748–758 (2007). https://doi.org/10.1002/pssb.200642098

    Article  ADS  Google Scholar 

  9. De La Espriella, N., Madera, J.C., Buendía, G.M.: Critical phenomena in a mixed spin-3 / 2 and spin-5 / 2 Ising ferro-ferrimagnetic system in a longitudinal magnetic field. J. Magn. Magn. Mater. 442, 350 (2017). https://doi.org/10.1016/j.jmmm.2017.07.015

    Article  ADS  Google Scholar 

  10. Chikazumi, S.: Physics of Ferromagnetism, 2nd ed. (Oxford University Press, Oxford,1997), 2nd ed., Oxford University Press, (1997)

  11. Alzate-Cardona, J.D., Sabogal-Suárez, D., Restrepo-Parra, E.: Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer. J. Magn. Magn. Mater. 429, 34–39 (2017). https://doi.org/10.1016/j.jmmm.2017.01.004

    Article  ADS  Google Scholar 

  12. Yessoufou, R.A., Amoussa, S.H., Hontinfinde, F.: Magnetic properties of the mixed spin-5 / 2 and spin-3 / 2 Blume-Capel. Ising system on the two-fold Cayley tree, vol. 7, pp. 555–567 (2009). https://doi.org/10.2478/s11534-009-0016-x

    Book  Google Scholar 

  13. Entley, W.R., Girolami, G.S.: High-temperature molecular magnets based on cyanovanadate building-blocks - spontaneous magnetization at 230-K. Science. 80, 397 (1995). https://doi.org/10.1126/science.268.5209.397

    Article  ADS  Google Scholar 

  14. Babel, D.: Magnetism and structure: model studies on transition metal fluorides and cyanides. Commen. Inorg. Chem. 5, 285–320 (1986). https://doi.org/10.1080/02603598608081849

    Article  Google Scholar 

  15. Klenze, R., Kanellakopulos, B., Trageser, G., Eysel, H.H., Klenze, R., Kanellakopulos, B.: Manganese hexacyanomanganate : magnetic interactions via cyanide in a mixed valence Prussian blue type compound, 5819 (1980). doi:https://doi.org/10.1063/1.439105

    Article  ADS  Google Scholar 

  16. Weiss, R., Gold, A., Terner, J.: Cytochromes c′: Biological Models for the S = 3/2,5/2 Spin-State Admixture, 106 2550–2579 (2006) doi:https://doi.org/10.13747/j.cnki.bdxyxb.2015.01.023

  17. Rakow, N.A., Suslick, K.S.: A colorimetric sensor array for odor visualization. Nature. 406, 710–713 (2000)

    Article  ADS  Google Scholar 

  18. Oguchi, T.: A theory of antiferromagnetism II. Prog. Theor. Phys. 13, 148–159 (1955)

    Article  ADS  Google Scholar 

  19. Bobák, A., Pokorný, V., Dely, J.: Anomalous behaviour of the magnetic susceptibility of the mixed spin-1 and spin-½ anisotropic Heisenberg model in the Oguchi approximation. J. Phys. Conf. Ser. 200, 22001 (2010) http://stacks.iop.org/1742-6596/200/i=2/a=022001

    Article  Google Scholar 

  20. Dely, J., Strecka, J., Canova, L.: Phase diagram of the spin-1 anisotropic Heisenberg model with a single-ion anisotropy, 1–2 (2007). http://arxiv.org/abs/cond-mat/0611212

  21. Deviren, B., Keskin, M., Canko, O.: Magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model in the longitudinal magnetic field within the effective-field approximation. Phys. A Stat. Mech. Its Appl. 388, 1835–1848 (2009). https://doi.org/10.1016/j.physa.2009.01.032

    Article  ADS  Google Scholar 

  22. Albayrak, E.: Anisotropic Heisenberg model for the mixed spin-2 and spin-1/2 in the Oguchi approximation on the simple cubic lattice. J. Supercond. Nov. Magn. 486, 161–167 (2017). https://doi.org/10.1016/j.physa.2017.05.042

    Article  Google Scholar 

  23. Dakhama, A., Benayad, N.: On the existence of compensation temperature in 2d mixed-spin Ising ferrimagnets: an exactly solvable model. J. Magn. Magn. Mater. 213, 117–125 (2000). https://doi.org/10.1016/S0304-8853(99)00606-X

    Article  ADS  Google Scholar 

  24. Abubrig, O.F., Horvath, D., Bobak, A., Jaščur, M.: Mean-field solution of the mixed spin-1 and 2 Ising system with di erent single-ion anisotropies. Phys. A: Stat. Mech. Appl. 296, 437–450 (2001)

    Article  Google Scholar 

  25. Reyes, J.A., De La Espriella, N., Buendía, G.M.: Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study. Phys. Stat. Solid. Bas. Res. 252, 2268–2274 (2015). https://doi.org/10.1002/pssb.201552110

    Article  ADS  Google Scholar 

  26. Yeomans, J.M.: Statistical Mechanics of Phase Transitions, Oxford Science Publications, (1994)

Download references

Acknowledgments

We would like to thank both of Dr. Ahmed S. Jbara and Mr. Ali Sabbar for their useful insights regarding the computational calculations of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadey K. Mohamad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad, H.K., Alturki, H.F. Spin Compensation Temperatures of a Mixed Spin Blume-Capel Ising Ferrimagnetic System: a Study of Low-Temperature Molecular Magnet. J Supercond Nov Magn 32, 3971–3978 (2019). https://doi.org/10.1007/s10948-019-05198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05198-2

Keywords

Navigation