Skip to main content
Log in

Hysteresis Cycle and Magnetization Behaviors of a Mixed-Spin (7/2, 3/2) Ferrimagnetic Ising Model: Monte Carlo Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effects of single-ion anisotropies and an external magnetic field on the magnetization of the mixed-spin (7/2, 3/2) ferrimagnetic Ising system are investigated within Monte Carlo simulation. Under certain values of the physical parameters, multiple hysteresis loop behaviors such as double, triple, and quintuple hysteresis cycles have been observed. Particularly, the superparamagnetic phase has been shown. The ground-state phase diagrams are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iwamura, H., Miller, J.: Design and Demonstration of Ferromagnetic Exchange Interactions in Organic Molecules. Mol. Cryst. Liq. Cryst. 232, 233–250 (1993)

    Article  Google Scholar 

  2. Kahn, O., Martinez, C.: Spin-Transition Polymers: From Molecular Materials Toward Memory Devices. Science. 279(44), 44–48 (1998)

    Article  ADS  Google Scholar 

  3. Leite, V., Godoy, M., Figueiredo, W.: Finite-size effects and compensation temperature of a ferrimagnetic small particle. Phys. Rev. B. 71, 094427 (2005)

    Article  ADS  Google Scholar 

  4. Svendsen, H., Overgaard, J., Chevallier, M.A., Collet, E., Chen, Y.S., Jensen, F., Iversen, B.B.: Photomagnetic Switching of Heterometallic Complexes [M(dmf)4(H2O)3(μ-CN)Fe(CN)5]⋅H2O (M=Nd, La, Gd, Y) Analyzed by Single-Crystal X-ray Diffraction and Ab Initio Theory. Chem. Eur. J. 16, 7215–7223 (2010)

    Article  Google Scholar 

  5. Zhang, Y., Duan, G., Sato, O., Gao, S.: Structures and magnetism of cyano-bridged grid-like two-dimensional 4f–3d arrays. J. Mater. Chem. 16, 2625–2634 (2006)

    Article  Google Scholar 

  6. Kodama, R.: Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  ADS  Google Scholar 

  7. Gupta, A., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26, 3995–4021 (2005)

    Article  Google Scholar 

  8. Gale, E.M.: Peter Caravan. ACS Chem. Neurosci. 9(3), 395–397 (2018)

    Article  Google Scholar 

  9. Kaneyoshi, T.: J. Supercond. Nov. Magn. 31(7), 2149–2155 (2018). https://doi.org/10.1007/s10948-018-4818-1

    Article  Google Scholar 

  10. Kantar, E., Keskin, M.: Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014)

    Article  ADS  Google Scholar 

  11. Keskin, M., Kantar, E., Canko, O.: Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. Phys. Rev. E. 77(5), 051130 (2008)

    Article  ADS  Google Scholar 

  12. Wang, W., Bi, J., Liu, R., Chen, X., Liu, J.: Superlattice. Microst. 98, 433 (2016)

    Article  ADS  Google Scholar 

  13. Wang, W., Liu, R., Lv, D., Luo, X.: Monte Carlo simulation of magnetic properties of a nano-graphene bilayer in a longitudinal magnetic field. Superlattice. Microst. 98, 458–472 (2016)

    Article  ADS  Google Scholar 

  14. De La Espriella, N., Buendía, G.M.: Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model. J. Phys. Condens. Matter. 23(17), 176003 (2011)

    Article  ADS  Google Scholar 

  15. Karimou, M., Yessoufou, R., Hontinfinde, F.: Inter. J. Mod. Phys. B. 29(28), (2015)

  16. Mohamad, H.K.: Int. J. Adv. Res. 2, 442 (2014)

    Google Scholar 

  17. Masrour, R., Jabar, A., Bahmad, L., Hamedoun, M., Benyoussef, A.: Magnetic properties of mixed integer and half-integer spins in a Blume–Capel model: A Monte Carlo study. J. Magn. Magn. Mater. 421, 76–81 (2017)

    Article  ADS  Google Scholar 

  18. Bahlagui, T., Bouda, H., El Kenz, A., Bahmad, L., Benyoussef, A.: Monte Carlo simulation of compensation behavior for a mixed spin-5/2 and spin-7/2 Ising system with crystal field interaction. Superlattice. Microst. 110, 90–97 (2017)

    Article  ADS  Google Scholar 

  19. Bouda, H., Bahmad, L., Masrour, R., Benyoussef, A.: Compensation behavior in a ferrimagnetic mixed spin-7/2 and spin-3: Monte Carlo Simulation. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4894-2

  20. Néel, L.: Ann. Phys. 3, 137 (1948)

    Article  Google Scholar 

  21. Lv, D., Wang, F., Liu, R., Xue, Q., Li, S.: Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure. J. Alloys Compd. 701, 935–949 (2017)

    Article  Google Scholar 

  22. Bobák, A., Jaščur, M.: Ferrimagnetism in diluted mixed Ising spin systems. Phys. Rev. B. 51, 11533–11537 (1995)

    Article  ADS  Google Scholar 

  23. Keskin, M., Ertaş, M.: Mixed-spin Ising model in an oscillating magnetic field and compensation temperature. J. Stat. Phys. 139, 333–344 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Kantar, E., Deviren, B., Keskin, M.: Magnetic properties of mixed Ising nanoparticles with core-shell structure. Eur. Phys. J. B. 86, 253 (2013)

    Article  ADS  Google Scholar 

  25. Ertaş, M., Deviren, B., Keskin, M.: Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach. Phys. Rev. E. 86(5), 051110 (2012)

    Article  ADS  Google Scholar 

  26. Wang, W., Lv, D., Zhang, F., Bi, J.L., Chen, J.N.: Monte Carlo simulation of magnetic properties of a mixed spin-2 and spin-5/2 ferrimagnetic Ising system in a longitudinal magnetic field. J. Magn. Magn. Mater. 385, 16–26 (2015)

    Article  ADS  Google Scholar 

  27. Wang, W., Jiang, W., Lv, D.: Phys. Status Solidi (b). 249(1), 190–197 (2012)

    Article  ADS  Google Scholar 

  28. Kocakaplan, Y., Kantar, E., Keskin, M.: Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique. Eur. Phys. J. B. 86, 420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, W., Liu, Y., Gao, Z.Y., Zhao, X.R., Yang, Y., Yang, S.: Physica E: Low–dimensional Systems and Nanostructures. 110–124, 101 (2018)

    Google Scholar 

  30. El Hamri, M., Bouhou, S., Essaoudi, I., Ainane, A., Ahuja, R., Dujardin, F.: Hysteresis loop behaviors of a decorated double-walled cubic nanotube. Phys. B. 524, 137–143 (2017)

  31. Zaim, N., Zaim, A., Kerouad, M.: The hysteresis and magnetic properties of a nanoparticle with disordered interface. J. Clust. Sci. 29(4), 697–708 (2018)

    Article  Google Scholar 

  32. Zaim, A., Kerouad, M., Boughrara, M.: Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle. Solid State Commun. 158, 76–81 (2013)

    Article  ADS  Google Scholar 

  33. Arejdal, M., Kadiri, M., Abbassi, A., Slassi, A., Raiss, A.A., Bahmad, L., Benyoussef, A.: Magnetic properties of the double perovskite Ba2CoUO6: ab initio method, mean field approximation, and Monte Carlo study. J. Supercond. Nov. Magn. 29, 2659–2667 (2016)

    Article  Google Scholar 

  34. Wang, W., Li, Q., Lv, D., Liu, R., Peng, Z., Yang, S.: Monte Carlo study of magnetization plateaus in a zigzag graphene nanoribbon structure. Carbon. 120, 313–325 (2017)

    Article  Google Scholar 

  35. Mendes, R.G.B., Barreto, F.S., Santos, J.P.: Magnetic properties of the mixed spin 1/2 and spin 1 hexagonal nanotube system: Monte Carlo simulation study. J. Magn. Magn. Mater. 471, 365–369 (2019)

    Article  ADS  Google Scholar 

  36. Kaneyoshi, T., Nakamura, Y., Shin, S.: A diluted mixed spin-2 and spin-5/2 ferrimagnetic Ising system; a study of a molecular-based magnet. J. Phys. Condens. Matter. 10(31), 7025–7035 (1998)

    Article  ADS  Google Scholar 

  37. Jiang, W., Lo, V., Bai, B., Yang, J.: Magnetic hysteresis loops in molecular-based magnetic materials AFeIIFeIII(C2O4)3. Phys. A. 389, 2227–2233 (2010)

    Article  Google Scholar 

  38. Kaneyoshi, T., Jaščur, M., Tomczak, P.: The ferrimagnetic mixed spin-1/2and spin-3/2Ising system. J. Phys. Condens. Matter. 4, L653–L658 (1992)

    Article  Google Scholar 

  39. Honmura, R., Kaneyoshi, T.: Contribution to the new type of effective-field theory of the Ising model. J. Phys. C Solid State Phys. 12(19), 3979–3992 (1979)

    Article  ADS  Google Scholar 

  40. Godoy, M., Leite, V.S., Figueiredo, W.: Phys. Rev. B. 69(5), 054428 (2004)

    Article  ADS  Google Scholar 

  41. Mohamad, H.K., Domashevskaya, E.P., Klinskikh, A.F.: Spin compensation temperatures in the mean-field approximation of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system. Physica A: Statistical Mechanics and its Applications. 388(22), 4713–4718 (2009)

    Article  ADS  Google Scholar 

  42. Hachem, N., Lafhal, A., Zahir, H., El Bouziani, M. Madani, and A. Alrajhi M.: The spin-2 Blume-Capel model by position space renormalization group. Superlattice. Microst. 111, 927–937 (2017)

  43. Antari, A.E., Zahir, H., Hasnaoui, A., Hachem, N., Alrajhi, A., Madani, M., Bouziani, M.E.: Int. J. Theor. Phys. 1–13 (2018)

  44. Benayad, N., Klümper, A., Zittartz, J., Benyoussef, A.: Two-dimensional mixed spin Ising models with bond dilution and random ±J interactions. Zeitschrift für Physik B Condensed Matter. 77(2), 339–341 (1989)

    Article  ADS  Google Scholar 

  45. Oitmaa, J., Enting, I.: J. Phys. Condens. Matter. 18, 10931 (2006)

    Article  ADS  Google Scholar 

  46. Karimou, M., Yessoufou, R.A., Oke, T.D., Kpadonou, A., Hontinfinde, F.: Condens. Matter Phys. 19, 33003 (2016)

  47. Jabar, A., Masrour, R., Benyoussef, A., Hamedoun, M.: Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice. J. Magn. Magn. Mater. 397, 287–294 (2016)

    Article  ADS  Google Scholar 

  48. Nakamura, Y., Tucker, J.W.: Monte Carlo study of a mixed spin-1 and spin-3/2 Ising ferromagnet. IEEE Trans. Magn. 38, 2406–2408 (2002)

    Article  ADS  Google Scholar 

  49. Figuerola, A., Diaz, C., El Fallah, M.S., Ribas, J., Maestro, M., & Mahía, J.: Structure and magnetism of the first cyano-bridged hetero-one-dimensional GdIII–CrIII complexes Chem. Commun. 13, 1204 (2001)

  50. Verdaguer, M.: Molecular electronics emerges from molecular magnetism. Science. 272(5262), 698–699 (1996)

    Article  ADS  Google Scholar 

  51. Coronado, E., Delhaès, P., Gatteschi, D., Miller, J.S. (eds.): Molecular magnetism: from molecular assemblies to the devices, vol. 321. Springer Science & Business Media, Berlin (2013)

  52. Linert, W., Verdaguer, M. (eds.): Molecular magnets: recent highlights. Springer, Berlin

  53. Yoshii, K.: Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 159, 204–208 (2001)

    Article  ADS  Google Scholar 

  54. Wang, W., Chen, D., Lv, D., Liu, J., Li, Q., Peng, Z.: J. Phys. Chem. Solids. 108(39), (2017)

  55. Prijic, S., Scancar, J., Romih, R., Cemazar, M., Bregar, V.B., Znidarsic, A., Sersa, G.: Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol. 236, 167–179 (2010)

    Article  Google Scholar 

  56. Alborzi, Z., Hassanzadeh, A., Golzan, M.: Int. J. Nanosci. Nanotechnol. 8, 93 (2012)

    Google Scholar 

  57. Sun, C., Du, K., Fang, C., et al.: PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. J. Am. Chem. Soc. nano 4(4), 2402 (2010)

  58. Bulte, J.W.M., Brooks, R.A., Moskowitz, B.M, Bryant Jr, L. H., Frank, J. A.: Relaxometry and magnetometry of the MR contrast agent MION–46L. Magn. Reson Med. 42, 379 (1999)

  59. Bouhou, S., Essaoudi, I., Ainane, A., Saber, M., Dujardin, F., de Miguel, J.J.: Hysteresis loops and susceptibility of a transverse Ising nanowire. J. Magn. Magn. Mater. 324, 2434–2441 (2012)

    Article  ADS  Google Scholar 

  60. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  ADS  Google Scholar 

  61. Deviren, B., Batı, M., Keskin, M.: The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system. Phys. Scr. 79, 065006 (2009)

    Article  ADS  MATH  Google Scholar 

  62. Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Bahmad, L.: Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Phys. B. 472, 19–24 (2015)

    Article  ADS  Google Scholar 

  63. Masrour, R., Jabar, A., Benyoussef, A., Hamedoun, M.: Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice. J. Magn. Magn. Mater. 393, 151–156 (2015)

    Article  ADS  Google Scholar 

  64. Peng, Z., Wang, W., Lv, D., Liu, R.J., Li, Q.: Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study. Superlattice. Microst. 109, 675–686 (2017)

    Article  ADS  Google Scholar 

  65. Şarlı, N., Akbudak, S., Ellialtıoğlu, M.: The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene. Phys. B. 452, 18–22 (2014)

    Article  ADS  Google Scholar 

  66. Chandra, S., Noronha, G., Dietrich, S., Lang, H., Bahadur, D.: Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle. J. Magn. Magn. Mater. 380, 7–12 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bouda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouda, H., Bahlagui, T., Bahmad, L. et al. Hysteresis Cycle and Magnetization Behaviors of a Mixed-Spin (7/2, 3/2) Ferrimagnetic Ising Model: Monte Carlo Investigation. J Supercond Nov Magn 32, 2539–2550 (2019). https://doi.org/10.1007/s10948-018-4981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4981-4

Keywords

Navigation