Skip to main content
Log in

Dynamic Phase Transitions and Compensation Temperatures in a Mixed Spin-3/2 and Spin-5/2 Ising System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine the dynamic phase transitions and the dynamic compensation temperatures, within a mean-field approach, in the mixed spin-3/2 and spin-5/2 Ising system with a crystal-field interaction under a time-varying magnetic field on a hexagonal lattice by using Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices with σ=3/2 and S=5/2. The Hamiltonian model includes intersublattice, intrasublattice, and crystal-field interactions. The intersublattice interaction is considered antiferromagnetic and to be a simple but interesting model of a ferrimagnetic system. We employ the Glauber transition rates to construct the mean-field dynamic equations, and we solve these equations in order to find the phases in the system. We also investigate the thermal behavior of the dynamic sublattice magnetizations and the dynamic total magnetization to obtain the dynamic phase transition points and compensation temperatures as well as to characterize the nature (continuous and discontinuous) of transitions. We also calculate the dynamic phase diagrams including the compensation temperatures in five different planes. According to the values of Hamiltonian parameters, five different fundamental phases, three different mixed phases, and six different types of compensation behaviors in the Néel classification nomenclature exist in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, P.F., Chen, Y.G., Chen, H.: Second- to first-order transition in two coupled antiferromagnetic rings. Eur. Phys. J. B 51, 473 (2006)

    Article  ADS  Google Scholar 

  2. Bobák, A., Jurčišin, M.: Ferrimagnetism in diluted mixed-spin two-dimensional Ising models. J. Magn. Magn. Mater. 163, 292 (1996)

    Article  ADS  Google Scholar 

  3. Buendía, G.M., Cardona, R.: Monte Carlo study of a mixed spin-3/2 and spin-1/2 Ising ferrimagnetic model. Phys. Rev. B 59, 6784 (1999)

    Article  ADS  Google Scholar 

  4. Jiang, W., Wei, G.-Z., Xin, Z.-H.: Magnetic properties of a mixed spin-1/2 and spin-3/2 transverse Ising model with a crystal field. Physica A 293, 455 (2001)

    Article  MATH  ADS  Google Scholar 

  5. Wei, G.-Z., Liang, Y.-Q., Zhang, Q., Xin, Z.-H.: Magnetic properties of mixed-spin Ising systems in a longitudinal magnetic field. J. Magn. Magn. Mater. 271, 246 (2004)

    Article  ADS  Google Scholar 

  6. Li, J., Wei, G., Du, A.: Green function study of a mixed spin-3/2 and spin-1/2 Heisenberg ferrimagnetic model. J. Magn. Magn. Mater. 269, 410 (2004)

    Article  ADS  Google Scholar 

  7. Ekiz, C.: Mixed spin-1/2 and spin-3/2 Ising system in a longitudinal magnetic field. J. Magn. Magn. Mater. 293, 913 (2005)

    Article  ADS  Google Scholar 

  8. Jaščur, M., Strečka, J.: Magnetic properties of a mixed spin-1/2 and spin-3/2 Ising model with an uniaxial and biaxial crystal-field potential. Physica A 358, 393 (2005)

    Article  ADS  Google Scholar 

  9. Zhang, X., Kong, X.-M.: Ferromagnetism in the mixed spin-1/2 and spin-3/2 Blume-Capel system on the two-fold Cayley tree. Physica A 369, 589 (2006)

    Article  ADS  Google Scholar 

  10. Essaoudi, I., Bärner, K., Ainane, A., Saber, M.: Magnetic properties and hysteresis loops of the S=1/2 and S=3/2 bilayer Ising model. Physica A 385, 208 (2007)

    Article  ADS  Google Scholar 

  11. Liang, Y.-Q., Wei, G.-Z., Ma, F.-C., Song, G.-L.: Magnetic properties of a mixed spin-1/2 and spin-3/2 transverse Ising model in a longitudinal magnetic field. Physica A 387, 4513 (2008)

    Article  ADS  Google Scholar 

  12. Deviren, B., Keskin, M., Canko, O.: Kinetics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model. J. Magn. Magn. Mater. 321, 458 (2009)

    Article  ADS  Google Scholar 

  13. Deviren, B., Keskin, M., Canko, O.: Magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model in the longitudinal magnetic field within the effective-field approximation. Physica A 388, 1835 (2009)

    Article  ADS  Google Scholar 

  14. Strečka, J.: Exact results of a mixed spin-1/2 and spin-S Ising model on a bathroom tile (4–8) lattice: effect of uniaxial single-ion anisotropy. Physica A 360, 379 (2006)

    Article  ADS  Google Scholar 

  15. Zhang, Q., Wei, G.-Z., Gu, Y.: The study of the phase diagram and internal energy of the mixed spin-3/2 and spin-5/2 ferrimagnetic Ising system with interlayer coupling by effective-field theory; a simple approach of calculating internal energy. Phys. Status Solidi B 242, 924 (2005)

    Article  ADS  Google Scholar 

  16. Albayrak, E., Yiğit, A.: Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice. Phys. Lett. A 353, 121 (2006)

    Article  ADS  Google Scholar 

  17. Yessoufou, R.A., Amoussa, H.S., Hontinfinde, F.: Magnetic properties of the mixed spin-5/2 and spin-3/2 Blume-Capel Ising system on the two-fold Cayley tree. Cent. Eur. J. Phys. 7, 555 (2009)

    Article  Google Scholar 

  18. De la Espriella, N., Buendía, G.M.: Ground state phase diagrams for the mixed Ising 3/2 and 5/2 spin model. Physica A 389, 2725 (2010)

    Article  ADS  Google Scholar 

  19. Bellessa, G.: High-spin tunneling in Fe-8 molecular magnets. Europhys. Lett. 52, 358 (2000)

    Article  ADS  Google Scholar 

  20. Buendía, G.M., Machado, E.: Kinetics of a mixed Ising ferrimagnetic system. Phys. Rev. E 58, 1260 (1998)

    Article  ADS  Google Scholar 

  21. Keskin, M., Kantar, E., Canko, O.: Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. Phys. Rev. E 77, 051130 (2008)

    Article  ADS  Google Scholar 

  22. Keskin, M., Canko, O., Guldal, S.: Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field. Phys. Lett. A 374, 1 (2009)

    Article  ADS  Google Scholar 

  23. Maltempo, M.M., Moss, T.H.: The spin 3/2 state and quantum spin mixtures in haem proteins. Rev. Biophys. 9, 181 (1976)

    Article  Google Scholar 

  24. Dugad, L.B., Marathe, V.R., Mitra, S.: Electronic-structure of spin-mixed iron(III) porhyrins—a proton magnetic-resonance study. Proc. Indian Acad. Sci. 95, 189 (1985)

    Google Scholar 

  25. Weiss, R., Gold, A., Terner, J.: Cytochromes c′: biological models for the S=3/2, 5/2 spin-state admixture? Chem. Rev. 106, 2550 (2006)

    Article  Google Scholar 

  26. Zeng, Y., Caignan, G.A., Bunce, R.A., Rodriguez, J.C., Wilks, A., Rivera, M.: Azide-inhibited bacterial heme oxygenases exhibit an S=3/2 (d xz, \(d_{\mathrm{yz}})^{3}(d_{\mathrm{xy}})^{1}(d_{\mathrm{z}}^{2})^{1}\) spin state: mechanistic implications for heme oxidation. J. Am. Chem. Soc. 127, 9794 (2005)

    Article  Google Scholar 

  27. Rakow, N.A., Suslick, K.S.: A colorimetric sensor array for odour visualization. Nature 406, 710 (2000)

    Article  ADS  Google Scholar 

  28. Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Chakrabarti, B.K., Acharyya, M.: Dynamic transitions and hysteresis. Rev. Mod. Phys. 71, 847 (1999)

    Article  ADS  Google Scholar 

  30. Sides, S.W., Rikvold, P.A., Novotny, M.A.: Kinetic Ising model in an oscillating field: finite-size scaling at the dynamic phase transition. Phys. Rev. Lett. 81, 834 (1998)

    Article  ADS  Google Scholar 

  31. Keskin, M., Canko, O., Deviren, B.: Dynamic phase transition in the kinetic spin-3/2 Blume-Capel model under a time-dependent oscillating external field. Phys. Rev. E 74, 011110 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Robb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A.: Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model. Phys. Rev. E 76, 021124 (2007)

    Article  ADS  Google Scholar 

  33. Samoilenko, Z.A., Okunev, V.D., Pushenko, E.I., Isaev, V.A., Gierlowski, P., Kolwas, K., Lewandowski, S.J.: Dynamic phase transition in amorphous YBaCuO films under Ar laser irradiation. Inorg. Mater. 39, 836 (2003)

    Article  Google Scholar 

  34. Jiang, Q., Yang, H.-N., Wang, G.C.: Scaling and dynamics of low frequency hysteresis loops in ultrathin Co films on a Cu(001) surface. Phys. Rev. B 52, 14911 (1995)

    Article  ADS  Google Scholar 

  35. Kleemann, W., Braun, T., Dec, J., Petracic, O.: Dynamic phase transitions in ferroic systems with pinned domain walls. Phase Transit. 78, 811 (2005)

    Article  Google Scholar 

  36. Gedik, N., Yang, D.-S., Logvenov, G., Bozovic, I., Zewail, A.H.: Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425 (2007)

    Article  ADS  Google Scholar 

  37. Robb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A.: Evidence for a dynamic phase transition in [Co/Pt]3 magnetic multilayers. Phys. Rev. B 78, 134422 (2008)

    Article  ADS  Google Scholar 

  38. Kanuga, K., Cakmak, M.: Dynamic phase diagram derived from large deformation non-linear mechano-optical behavior of polyethylene naphthalate nanocomposites. Polymer 48, 7176 (2007)

    Article  Google Scholar 

  39. Mansuripur, M.: Magnetization reversal, coercivity, and the process of thermomagnetic recording in thin-films of amorphous rare-earth transition-metal alloys. J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  40. Mathoniere, C., Nuttall, C.J., Carling, S.G., Day, P.: Ferrimagnetic mixed-valency and mixed-metal tris(oxalato)iron(III) compounds: Synthesis, structure, and magnetism. Inorg. Chem. 35, 1201 (1996)

    Article  Google Scholar 

  41. Hernando, A., Kulik, T.: Exchange interaction through amorphous paramagnetic layers in ferromagnetic nanocrystals. Phys. Rev. B 49, 7064 (1994)

    Article  ADS  Google Scholar 

  42. Alex, M., Shono, K., Kuroda, S., Koshino, N., Ogawa, S.: Ce-substituted garnet media for magnetooptic recording. J. Appl. Phys. 67, 4432 (1990)

    Article  ADS  Google Scholar 

  43. Machado, E., Buendía, G.M.: Metastability and compensation temperatures for a mixed Ising ferrimagnetic system. Phys. Rev. B 68, 224411 (2003)

    Article  ADS  Google Scholar 

  44. Godoy, M., Leite, V.S., Figueiredo, W.: Mixed-spin Ising model and compensation temperature. Phys. Rev. B 69, 054428 (2004)

    Article  ADS  Google Scholar 

  45. Keskin, M., Ertas, M.: Mixed-spin Ising model in an oscillating magnetic field and compensation temperature. J. Stat. Phys. 139, 333 (2010)

    Article  MATH  ADS  Google Scholar 

  46. Leite, V.S., Godoy, M., Figueiredo, W.: Finite-size effects and compensation temperature of a ferrimagnetic small particle. Phys. Rev. B 71, 094427 (2005)

    Article  ADS  Google Scholar 

  47. Keskin, M., Deviren, B., Canko, O.: Dynamic compensation temperature in the mixed spin-1/2 and spin-3/2 Ising model in an oscillating field on alternate layers of hexagonal lattice. IEEE Trans. Magn. 45, 2640 (2009)

    Article  ADS  Google Scholar 

  48. Keskin, M., Ertas, M.: Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field. Phys. Rev. E 80, 061140 (2009)

    Article  ADS  Google Scholar 

  49. Chern, G., Horng, L., Shieh, W.K., Wu, T.C.: Antiparallel state, compensation point, and magnetic phase diagram of Fe3O4/Mn3O4 superlattices. Phys. Rev. B 63, 094421 (2001)

    Article  ADS  Google Scholar 

  50. Kageyama, H., Khomskii, D.I., Levitin, R.Z., Vasil’ev, A.N.: Weak ferrimagnetism, compensation point, and magnetization reversal in Ni(HCOO)2 center dot 2H2O. Phys. Rev. B 67, 224422 (2003)

    Article  ADS  Google Scholar 

  51. Temizer, Ü., Keskin, M., Canko, O.: Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice. J. Magn. Magn. Mater. 321, 2999 (2009)

    Article  ADS  Google Scholar 

  52. Néel, L.: Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137 (1948)

    Google Scholar 

  53. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)

    Google Scholar 

  54. Keskin, M., Kantar, E.: Dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. J. Magn. Magn. Mater. 322, 2789 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Keskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deviren, B., Keskin, M. Dynamic Phase Transitions and Compensation Temperatures in a Mixed Spin-3/2 and Spin-5/2 Ising System. J Stat Phys 140, 934–947 (2010). https://doi.org/10.1007/s10955-010-0025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0025-6

Keywords

Navigation