Skip to main content
Log in

Enhanced Magnetoresistance in In-Plane Monolayer MoS2 with CrO2 Electrodes

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetoresistance of monolayer MoS2 is reported to increase when used in in-plane configuration with CrO2 half-metal ferromagnet (HMF) electrodes. Density functional theory (DFT)- and non-equilibrium Green’s function (NEGF)-based simulations show that high magnetoresistance (MR) values of ∼860% can be achieved in in-plane monolayer MoS2 with CrO2 electrodes, which is much higher than the MR value of ∼300% for nine-layer and the MR value of ∼70% for single-layer out-of-plane MoS2 reported in Dolui et al., Phys. Rev. B 90(R), 041401 (2014) past by other researchers. High spin-injection efficiency ∼100% is also obtained at high bias voltages. High MR and perfect spin filtration suggests the importance of this configuration in spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dolui, K., Narayan, A., Rungger, I., Sanvito, S.: Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B 90(R), 041401 (2014)

    Article  ADS  Google Scholar 

  2. Felser, C., Fetcher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. 46(5), 668–699 (2007)

    Article  Google Scholar 

  3. Fert, A.: Origin, development, and future of spintronics (Nobel Lecture). Angew. Chem. 47(32), 5956–5967 (2008)

    Article  Google Scholar 

  4. Zǔtic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  5. Yao, K.L., Min, Y., Liu, Z.L., Cheng, H.G., Zhu, S.C., Gao, G.: First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A 372(34), 5609–5613 (2008)

    Article  ADS  Google Scholar 

  6. Titus, E., Krishna, R., Gracio, J., Singh, M.: Antonio Luis Ferreira and Ricardo G Dias, Carbon nanotube based magnetic tunnel junctions (MTJs) for spintronics spplication, electronic properties of carbon nanotube, InTech (2011), https://doi.org/10.5772/16539

    Google Scholar 

  7. Chakraverty, M., Kittur, H.M., Arun Kumar, P.: First principle simulations of various magnetic tunnel junctions for applications in magnetoresistive random access memories. IEEE Trans. Nanotechnol. 6, 12 (2013)

    Google Scholar 

  8. Choudhary, S., Goyal, R.: First-principles study of spin transport in CrO2–graphene–CrO2 magnetic tunnel junction R. J. Supercond. Nov. Magn. 29, 139 (2016)

    Article  Google Scholar 

  9. Choudhary, S., Varshney, M.: First-principles study of spin transport in CrO2–CNT–CrO2 magnetic tunnel junction M. J. Supercond. Nov. Magn. 28, 3141 (2015)

    Article  Google Scholar 

  10. Kuc, A., Heine, T.: The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 44, 2603–2614 (2015)

    Article  Google Scholar 

  11. Yao, Y., Ye, F., Qi, X.-L., Zhang, S.-C., Fang, Z.: Spin-orbit gap of graphene: first-principles calculations. Phys. Rev. B 75(R), 041401 (2007)

    Article  ADS  Google Scholar 

  12. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., Fabian, J.: Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009)

    Article  ADS  Google Scholar 

  13. Tan, W., Hunley, P., St. Omer, I.: Properties of silicon carbide nanotubes formed via reaction of SiO2 powder with SWCNTs and MWCNTs, ResearchGate (2009). https://doi.org/10.1109/SECON.2009.5174082

  14. Radisavljevic, B., Kis, A.: Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815 (2013)

    Article  ADS  Google Scholar 

  15. Yin, Z.Y., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012)

    Article  Google Scholar 

  16. Sundaram, R.S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C., Avouris, P., Steiner, M.: Electroluminescence in single layer MoS2. Nano Lett. 13, 1416 (2013)

    Article  ADS  Google Scholar 

  17. Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G., Jonker, B.T.: Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668 (2013)

    Article  ADS  Google Scholar 

  18. Jin, W., Yeh, P.-C., Zaki, N., Zhang, D., Sadowski, J.T., Al-Mahboob, A., van der Zande, A.M., Chenet, D.A., Dadap, J.I., Herman, I.P., Sutter, P., Hone, J., Osgood, R.M. Jr.: Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013)

    Article  ADS  Google Scholar 

  19. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  20. Wu, W., De, D., Chang, S.–C., Wang, Y., Peng, H., Bao, J., Pei, S.S.: High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys Lett. 102, 142106 (2013)

    Article  ADS  Google Scholar 

  21. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  22. Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, K.: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992–4003 (2014)

    Article  Google Scholar 

  23. Prasanna Kumar, S., Sandeep, P., Choudhary, S.: Changes in transconductance(gm) and Ion/Ioff with high-K dielectrics in MX2 monolayer 10 nm channel double gate n-MOSFET. Superlattice. Microstruct. 111, 642–648 (2017)

    Article  ADS  Google Scholar 

  24. Schwarz, K.-H.: CrO2 predicted as a half-metallic ferromagnet. J. Phys. F: Met. Phys. 16, L211 (1986)

    Article  ADS  Google Scholar 

  25. Hanbicki, A.T., Jonker, B.T., Itskos, G., Kioseoglou, G., Petrou. A.: Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys Lett. 80, 1240 (2002)

    Article  ADS  Google Scholar 

  26. Jacob, C.R., Reiher, M.: Spin in density-functional theory. Int. J. Quantum Chem. 112, 36613684 (2012)

    Article  Google Scholar 

  27. Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)

    Article  ADS  Google Scholar 

  28. Nowak, J., Rauluszkiewicz, J.: Spin dependent electron tunneling between ferromagnetic films. J. Magn. Magn. Mater. 109(1), 79–90 (1992)

    Article  ADS  Google Scholar 

  29. Choudhary, S., Qureshi, S.: Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)

    Article  ADS  Google Scholar 

  30. Poklonski, N.A., Ratkevich, S.V., Vyrko, S.A., Kislyakov, E.F., Bubel, O.N., Popov, A.M., Lozovik, Y.E., Hieu, N.N., Viet, N.A.: Structural phase transition and bandgap of uniaxially deformed (6,0) carbon nanotube. Chem. Phys. Lett., 545,71–77 (2012)

    Article  ADS  Google Scholar 

  31. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)

    Article  ADS  Google Scholar 

  32. Singh, A.K., Choudhary, S.: Understanding the spin transport in H2O-adsorbed graphene-based magnetic tunnel junction. J. Supercond. Novel Magn. 29(11), 2947–2951 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Choudhary, S. Enhanced Magnetoresistance in In-Plane Monolayer MoS2 with CrO2 Electrodes. J Supercond Nov Magn 31, 3245–3250 (2018). https://doi.org/10.1007/s10948-018-4583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4583-1

Keywords

Navigation