Skip to main content
Log in

First-Principles Study of Spin Transport in CrO2–CNT–CrO2 Magnetic Tunnel Junction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report first-principles calculations of spin-dependent quantum transport in magnetic tunnel junction (MTJ) consisting of carbon nanotube (CNT) sandwiched between two CrO2 half-metallic ferromagnet (HMF) electrodes. A large value of tunnel magnetoresistance (TMR) and perfect spin filtration is obtained using HMF electrodes in comparison to MTJs with ferromagnetic (FM) electrodes reported in past. The results suggest that HMF electrodes are more suitable over FM electrodes for implementing CNT-based MTJs. For this structure, the total spin current in parallel configuration is much larger than the total spin current in antiparallel configuration in the bias voltage range 0 to 1 V. Therefore, a high value of TMR ∼100 % is obtained at zero bias voltage which remains almost constant in the range of 0 to 1 V. The higher value of TMR and perfect spin filtration obtained with HMF electrodes recommends the importance of this structure in spin valves and other spin-based devices. The spin-dependent non-equilibrium transport is also investigated by analyzing the bias-dependent transmission coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao, K.L., Min, Y., Liu, Z.L., Cheng, H.G., Zhu, S.C., Gao, G.Y.: First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A 372(34), 5609–5613 (2008)

    Article  MATH  ADS  Google Scholar 

  2. Titus, E., Krishna, R., Grácio, J., Singh, M.: Antonio Luis Ferreira and Ricardo G Dias, Carbon nanotube based magnetic tunnel junctions (MTJs) for spintronics spplication, Electronic Properties of Carbon Nanotube, InTech, doi:10.5772/16539 (2011)

  3. Wang, B., Zhu, Y., Ren, W., Wang, J., Guo, H.: Spin-dependent transport in Fe-doped carbon nanotubes. Phys. Rev. B 75, 235415 (2007)

    Article  ADS  Google Scholar 

  4. Nowak, J., Rauluszkiewicz, J.: Spin dependent electron tunneling between ferromagnetic films. J. Magn. Magn. Mater. 109(1), 79–90 (1992)

    Article  ADS  Google Scholar 

  5. Chakraverty, M., Kittur, H.M., Arun Kumar, P.: First principle simulations of various magnetic tunnel junctions for applications in magnetoresistive random access memories. IEEE Trans. nanotechnol. 6, 12 (2013)

    Google Scholar 

  6. Cobas, E., Friedman, A.L., van’t Erve, O. M.J., Robinson, J.T., Jonker, B.T.: Graphene-based magnetic tunnel junction. IEEE Trans. Magn. 7, 49 (2013)

    Google Scholar 

  7. Li, W., Xue, L., Abruna, H.D., Ralph, D.C.: Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 89(18), 184418 (2014)

    Article  ADS  Google Scholar 

  8. Zhao, B., Monch, I., Vinzelberg, H., Muhl, T., Schneider, C.M.: Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl. Phys. Lett. 80, 3144 (2002)

    Article  ADS  Google Scholar 

  9. Mehrez, H., Taylor, J., Guo, H., Wang, J., Roland, C.: Carbon nanotube based magnetic tunnel junctions. Phys. Rev. Lett. 84, 2682 (2000)

    Article  ADS  Google Scholar 

  10. Morgan, C.: Magnetoresistance and transport in carbon nanotubes based devices. Forschungszentrum Jülich (2014)

  11. Bratkovsky, A.M.: Tunneling of electrons in conventional and half-metallic systems: towards very large magnetoresistance. Phys. Rev. B 56, 2344 (1997)

    Article  ADS  Google Scholar 

  12. Sughara, S., Tanaka, M.: A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84(13), 2307–2309 (2004)

    Article  ADS  Google Scholar 

  13. Atomistix, QuantumWise A/S, www.quantumwise.com

  14. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibriun electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  15. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  16. José, M., Emilio Artacho, S., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14(11), 2745–2779 (2002)

    Article  ADS  Google Scholar 

  17. Choudhary, S., Saini, G., Qureshi, S.: Impact of radial compression on the conductance of carbon nanotube field effect transistors. Modern Phys. Lett. B 28(2), 1–9 (2014)

    Article  Google Scholar 

  18. Choudhary, S., Qureshi, S.: Theoretical study on the effect of dopant positions and dopant density on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 377(5), 430–435 (2013)

    Article  ADS  Google Scholar 

  19. Choudhary, S., Qureshi, S.: Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)

    Article  ADS  Google Scholar 

  20. Poklonski, N.A., Ratkevich, S.V., Vyrko, S.A., Kislyakov, E.F., Bubel, O.N., Popov, A.M., Lozovik, Y.E., Hieu, N.N., Viet, N.A.: Structural phase transition and bandgap of uniaxially deformed (6, 0) carbon nanotube. Chem. Phys. Lett., 71–77 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Varshney, M. First-Principles Study of Spin Transport in CrO2–CNT–CrO2 Magnetic Tunnel Junction. J Supercond Nov Magn 28, 3141–3145 (2015). https://doi.org/10.1007/s10948-015-3142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3142-2

Keywords

Navigation