Skip to main content
Log in

Effect of Cu and Cation Redistribution on Structural and Magnetic Properties of Co-Mg Nanoferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural and magnetic properties of Cu-substituted, Co-Mg mixed nanoferrite synthesized by a sol-gel auto-combustion method are presented. Significant modifications in crystallite size, density, and grain size are observed with increasing Cu concentration. Comparable values of theoretical and experimental lattice parameters were obtained for all the Cu-substituted samples. Cation distribution estimated from X-ray intensity calculations shows that Cu influences the preferential site occupancy of Mg ions. It is found that Cu and Mg simultaneously occupy tetrahedral (A) and octahedral (B) sites with different ratios. The particle size calculated using TEM for undoped Co-Mg ferrite is about 80 nm. Saturation magnetization and permeability increase initially and reach a maximum value (x = 0.3) and then decrease. The observed variation is explained on the basis of redistribution of cations (Cu 2+ and Mg 2+) among the tetrahedral (A) and octahedral (B) sites. The initial permeability shows a good stability with increasing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chandra, K., Singhal, S., Goyal, S.: Hyperfine. Interact. 183, 80 (2008)

    Article  ADS  Google Scholar 

  2. 75-Joshi, H.H., Pandya, P.B., Modi, K.B., Jani, N.N., Baldha, G.J., Kulkarni, R.G.: Bull. Mater. Sci. 20, 93–101 (1997)

  3. Nlebedim, I.C., Hadimani, R.L., Prozorov, R., Jiles, D.C.: J. Appl. Phys 113, 17A928 (2013)

    Article  Google Scholar 

  4. Franco , A. Jr, Silva, F.C., Zapf, V.S.: J. Appl. Phys 111(2013), 07B530 (2012)

    Article  Google Scholar 

  5. Druc, A.C., Borhan, A.I., Diaconu, A., Iordan, A.R., Nedelcu, G.G., Leontie, L., Palamaru, M.N.: 40, 13573 (2014)

  6. Barati, M.R.: J. Alloys and Comp. 478, 375 (2009)

    Article  Google Scholar 

  7. Masti, S.A., Sharma, A.K., Vasambekar, P.N., Vaingankar, A.S.: J. Magn. Magn. Mater. 305, 436 (2006)

    Article  ADS  Google Scholar 

  8. Ahmed, M.A., Abd-Ellatif, G., Rashad, M.: J. Magn. Magn. Mater. 232, 194 (2001)

    Article  ADS  Google Scholar 

  9. Manjurul Haque, M., Huq, M., Hakim, M.A.: Mat. Chem. And Phys. 112, 580–586 (2008)

    Article  Google Scholar 

  10. Cullity, B.D.: Elements of x-ray diffraction, 2nd edn. AddisonWesley, Philippines. California (1978)

  11. Msomi, J.Z., Dlamini, W.B., Moyo, T., Ezekiel, P.: J. Magn. Magn. Mater 373, 68 (2015)

    Article  ADS  Google Scholar 

  12. Mund*, H.S., Ahuja, B.L.: Mater. Res. Bull. 85, 228–233 (2017)

    Article  Google Scholar 

  13. Buerger, M.J.: Crystal structure analysis. Wiley, New York (1960)

  14. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V.: Inter. J. of Mod. Phys. B. 29, 1550032 (2015)

    Article  Google Scholar 

  15. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V., Purushotham, Y.: Mater. Chem. and Phys. 148, 585–591 (2014)

    Article  Google Scholar 

  16. Gupta, T.K., Coble, R.L.: J. Am. Ceram. Soc. 51, 521 (1968)

    Article  Google Scholar 

  17. Coble, R.L., Gupta, T.K. In: Kucznski, G. C., Hroton, N. A., Gibbon, C. F. (eds.) Sintering and Related Phenomena, p 423. Gordon and Breach, New York (1967)

  18. Ravinder, D.: Cryst. Res. Technol. 27, 4 (1992)

    Article  Google Scholar 

  19. Al-Hilli, M.F., Li, S., Kassim, K.D.: Mater. Chem. and Phys. 128, 127–132 (2011)

    Article  Google Scholar 

  20. Waldron R.: Phys. Rev. 99, 1717 (1955)

    Article  ADS  Google Scholar 

  21. Ehi-Eromosele, C.O., Ita1, B.I., Iweala, E.E.J.: J. Sol-Gel Sci. Technol. 76, 298–308 (2015)

  22. Bala, T., Sankar, C.R., Baidakova, M., Osipov, V., Enoki, T., Joy, P.A., Prasad, B.L.V., Sastry, M.: Langmuir 21, 10638 (2005)

    Article  Google Scholar 

  23. Trivedi, B.S., Jani, N.N., Joshi, H.H., Kulkarni, R.G.: J. of Mater. Sci 35, 5523–5526 (2000)

    Article  ADS  Google Scholar 

  24. Valenzuela, R.: Magnetic ceramics. National University of Mexico, (1994)

  25. Verma, A., Goel, T.C., Mendiratta, R.G., Gupta, R.G.: J .Magn. and Magn. Mater. 192, 271–276 (1999)

    Article  ADS  Google Scholar 

  26. Khana, M.H.R., Akther Hossainb, A.K.M.: J. Magn. and Magn. Mater 324, 550–558 (2012)

    Article  ADS  Google Scholar 

  27. Sumatra, C.h., Venugopal Reddy, K., Sowri Babu, K., Rama Chandra Reddya, A., Buchi Suresh, M., Rao, K.H.: J. Magn. and Magn. Mater. 340, 38–45 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rajesh Babu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, K.R., Rao, K.R. & Babu, B.R. Effect of Cu and Cation Redistribution on Structural and Magnetic Properties of Co-Mg Nanoferrite. J Supercond Nov Magn 30, 2621–2630 (2017). https://doi.org/10.1007/s10948-017-4068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4068-7

Keywords

Navigation