Skip to main content
Log in

Comparative Thermodynamic Analysis of Nanocrystalline and Amorphous Phase Formation in Nb/Al and Nb/Sn Systems During Mechanical Alloying

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Elemental powders of niobium–tin and niobium–aluminum were mechanically alloyed by Spex ball mill, respectively, in order to fabricate disordered nanocrystalline Nb3Sn and Nb3Al. The solid solution phase transitions of MA powders before and after heat treatment were characterized using X-ray diffraction (XRD) analysis. The microstructural analysis was performed using scanning electron microscopy (SEM). Results showed that mechanical alloying (MA) of Nb75Sn25 for 28 h led to the formation of the Nb3Sn intermetallic phase, while mechanical alloying of Nb75Al25 until 41 h did not show formation of the intermetallic phase. A thermodynamic analysis was performed based on the semiempirical theory of Miedema. The theory’s results showed that the intermetallic phase has a minimum Gibbs free energy compared to solid solution and amorphous states in both systems. Therefore, the most stable phase is intermetallic compound. But in case of the Nb/Al, the Nb3Al intermetallic compound was not formed during milling and needs heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nyilas, A., Osamura, K., Sugano, M.: Mechanical and physical properties of Bi-2223 and Nb3Sn superconducting materials between 300 K and 7 K. Supercond. Sci. Technol 16, 1120–1126 (2003)

    Article  Google Scholar 

  2. Katagiri, K., Kasaba, K., Hojo, M., Osamura, K., Sugano, M., Kimura, A., Ogata, T.: Tensile testing methods of Cu/Nb3Sn superconducting wires at room temperature. Phys. C 357-360, 1302–1305 (2001)

    Article  ADS  Google Scholar 

  3. Osamura, K., Machiya, S., Tsuchiya, Y., Suzuki, H., Shobu, T., Sato, M., Harjo, S., Miyashita, K., Wadayama, Y., Ochiai, S.: Thermal strain exerted on superconductive filaments in practical Nb3Sn and Nb3Al strands. Supercond. Sci. Technol 26, 94001 (2013)

    Article  Google Scholar 

  4. Hanak, J.J., Strater, K., Cullen, G.W.: Preparation and properties of vapor-deposited niobium stannide. RCA Review 25, 342–365 (1964)

    Google Scholar 

  5. Hammond, R.H.: Electron beam evaporation synthesis of a15 superconducting compounds: accomplishments and prospects. IEEE Trans. Magn 11, 201–207 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  6. Eremeev, G., Clemens, B., Macha, K., Park, H., Williams, R.S.: development of nb3sn cavity vapor diffusion deposition. Proceedings of SRF, Paris, France (2013)

  7. Matsakov, A.A., Lawarev, B.G.: Study of peculiarities of structural of digram of niobium-tin system. Phys. Met. Metallogr 35(1), 148–156 (1973)

    Google Scholar 

  8. Pasotti, G., Ricci, M.V., Sacchetti, N., Sacerdoti, G., Spadoni, M.: Superconducting Nb3Sn diffusion layers. J. Mater. Sci 6, 54–59 (1971)

    Article  ADS  Google Scholar 

  9. Pilarczyk, W., Nowosielski, R., Szymczak, M.: The influence of initial powder properties on the mechanical alloying process and the final powders structure. J. Achiev. Mater. Manuf. Eng 5, 169–176 (2011)

    Google Scholar 

  10. Patankar, S., Froes, F.: Formation of Nb3Sn using mechanically alloyed Nb-Sn powder. Solid. State. Sci 6, 887–890 (2004)

    Article  ADS  Google Scholar 

  11. Akihama, R., Murphy, R.J., Foner, S.: Nb-al multifilamentary superconducting composites produced by powder processing. Appl. Phys. Lett 37, 1107–1109 (1980)

    Article  ADS  Google Scholar 

  12. Lohberg, R., Eager, T.W., Puffer, I.M., Rose, R.M.: Fabrication and Jc (H,T) measurements on Nb3Al0.75Ge0.25ribbon. Appl. Phys. Lett 22, 69–71 (1973)

    Article  ADS  Google Scholar 

  13. Watanabe, K., Noto, K., Morita, H., Fujimori, H., Muto, Y.: Nb3Al formation process in powder metallurgy processed wires and sputtered multilayer films. IEEE Trans. Magn 25, 1984–1987 (1989)

    Article  ADS  Google Scholar 

  14. Cui, L.J., Yan, G., Pan, X.F., Zhang, p.X., Qi, M., Liu, X.H., Feng, Y., Chen, Y.L., Zhao, Y.: Fabrication and superconducting properties of a simple-structure jelly-roll Nb3Al wire with low-temperature heat-treatment. Phys. C: Superconducting and its Application 513, 24–28 (2015)

    Article  Google Scholar 

  15. Ymada, Y., Ayai, N., Takahashi, K., Sato, K., Sugimoto, M., Ando, T., Takahashi, Y., Noshi, M.: Development of Nb3Al/Cu multifilamentary superconductors. Adv. Cryog. Eng 40, 907–914 (1994)

    Google Scholar 

  16. Kumakura, H., Togano, K., Tachikawa, K., Tsukamoto, S., Irie, H.: Fabrication of Nb3Al and Nb3(Al,Ge) superconducting composite tapes by electron beam irradiation. Appl. Phys. Lett 49, 46–48 (1986)

    Article  ADS  Google Scholar 

  17. Schaper, W., Kehlenbeck, M., Zimmermann, I., Freyhardt, H.C.: Comparison of Al5-Nb3Al superconductors produced by laser alloying and infiltration. IEEE Trans. Magn 25, 1988–1991 (1989)

    Article  ADS  Google Scholar 

  18. Iijima, Y., Kosuge, M., Takeuchi, T., Inoue, K.: Nb3Al multifilamentary wires continuously fabricated by rapid-quenching. Adv. Cryog. Eng 40, 899–905 (1994)

    Google Scholar 

  19. Takeuchi, T., Iijima, Y., Inoue, K., Wada, H., ten Haken, B., ten Haken, H.J., Fukuda, K., Iwaki, G., Sakai, S., Moriai, H.: Strain effects in Nb3Al multifilamentary conductors prepared by phase transformation from bcc supersaturated-solid solution. Appl. Phys. Lett 71, 122–124 (1997)

    Article  ADS  Google Scholar 

  20. Takeuchi, T., Tagawa, K., Kiyoshi, T., Itoh, K., Kosuge, M., Yuyama, M., Wada, H., Iijima, Y., Inoue, K., Nakagawa, K., Iwaki, G., Moriai, H.: Enhanced current capacity of jelly-roll processed and transformed Nb3Al multifilamentary conductors. IEEE Trans. Appl. Supercond 9, 2682–2687 (1999)

    Article  Google Scholar 

  21. Liu, Z., Chen, Y., Du, L., Li, P., Cui, Y., Pa, X., Yan, G.: Preparation of Nb3Al superconductor by powder metallurgy and effect of mechanical alloying on the phase formation. J. Mod. Transport 22(1), 55–58 (2014)

    Article  Google Scholar 

  22. Qi, M., Feng Pan, X., Xiang Zhang, P., Jun Cui, L., Shan Li, C., Yan, G., Liang Chen, Y., Zhao, Y.: Fabrication of Nb3Al superconducting bulks by mechanical alloying. Physica C 501, 39–43 (2014)

    Article  ADS  Google Scholar 

  23. Benjamin, J.S.: Mechanical alloying. Sci. Am. 234, 40–49 (1976)

    Article  ADS  Google Scholar 

  24. Cooley, L.D., Hu, Y.F., Moodenbaugh, A.R.: Enhancement of the upper critical field of Nb3Sn utilizing disorder introduced by ball milling the elements. Appl. Phys. Lett 88, 142506–142509 (2006)

    Article  ADS  Google Scholar 

  25. Thieme, C.L.H., Pourrahimi, S., Foner, S.: Nb3Al wire produced by powder metallurgy and rapid quenching from high temperatures. Magnetics 25, 1992–1995 (1989)

    Article  Google Scholar 

  26. Santos, F.A., Ramos, A.S., Santos, C., Rodrigues, Jr, D.: Obtaining and stability verification of superconducting phases of Nb-Al and Nb-Sn systems by mechanical alloying and low-temperature. J. Alloy. Compd 491, 187–191 (2010)

  27. Yoo, D.J., Hwang, S.M., Lee, S.M.: Phase formation in mechanically alloyed Nb-Al powders. Mater. Sci. Lett 19, 1327–1329 (2000)

    Article  Google Scholar 

  28. Kim, M.S., Koch, C.C.: Structural development during mechanical alloying of crystalline niobium and tin powders. J. Appl. Phys 62, 3450–2453 (1987)

    Article  ADS  Google Scholar 

  29. Cho, Y.S., Koch, C.C.: Structural evolution in Nb3Sn during mechanical attrition. Mater. Sci. Eng. A 141, 139–148 (1991)

    Article  Google Scholar 

  30. Peng, Z., Suryanarayyana, C., Froes, F.H.: Mechanical alloying of Nb-Al powders. Metall. Mater, Trans A 27A, 41–48 (1996)

    Article  ADS  Google Scholar 

  31. Karimpoor, A.A., Erb, U., Aust, K.T., Palumbo. G.: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651–656 (2003)

    Article  Google Scholar 

  32. Mousavi, T., Karimzadeh, F., Abbasi, M.H.: Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater. Sci. Eng. A 487, 46–51 (2008)

    Article  Google Scholar 

  33. Mukhopadhyay, N.K., Mukherjee, D., Dutta, S., Manna, R., Kim, D.H., Manna, I.: Synthesis and characterization of nanocrystalline and amorphous (Al4Cu9)94.5Cr5.5-brass alloy by rapid solidification and mechanical milling. J. Alloy. Compd 457, 177–184 (2008)

    Article  Google Scholar 

  34. Cheng, X., Ouyang, Y., Shi, H., Zhong, X., Du, Y., Tao, X.: Nano-amorphous (FeAl)1−xZrx alloys prepared by mechanical alloying. J. Alloy. Compd 421, 314–318 (2006)

    Article  Google Scholar 

  35. Varin, R.A., Czujko, T., Mizera, J.: Microstructural evolution during controlled ball milling of (Mg2Ni + MgNi2) intermetallic alloy. J. Alloy. Compd 350, 332–339 (2003)

    Article  Google Scholar 

  36. Van der Kolk, G.J., Miedema, A.R., Niessen, A.K.: On the composition range of amorphous binary transition metal alloys. J. Less-Common Met 145, 1–17 (1988)

    Article  Google Scholar 

  37. Weeber, A.W.: Application of the Miedema model to formation enthalpies and crystallisation temperatures of amorphous alloys. J. Phys. F: Met. Phys 17, 809–813 (1987)

    Article  ADS  Google Scholar 

  38. Zhang, L.C., Kim, K.B., Yu, P., Zhang, W.Y., Kunz, U., Eckert, J.: Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J. Alloy. Compd 428, 157–163 (2007)

    Article  Google Scholar 

  39. Miedema, A.R., De Boer, F.R., Boom, R.: Model prediction for the enthalpy of formation of transition metal alloys. Calphad 1, 341–359 (1977)

    Article  Google Scholar 

  40. Miedema, A.R.: On the heat of formation of solid alloys. J. Less-Common Met 41, 283–298 (1975)

    Article  Google Scholar 

  41. Miedema, A.R.: On the heat of formation of solid alloys II. J. Less-Common Met 46, 67–83 (1976)

    Article  Google Scholar 

  42. Bangwei, Z., Jesser, W.A.: Formation energy of ternary alloy systems calculated by an extended Miedema model. Phys. B 315, 123–132 (2002)

    Article  ADS  Google Scholar 

  43. Nagarajan, R., Ranganathan, S.: A study of the glass-forming range in the ternary Ti-Ni-Al by mechanical alloying. Mater. Sci. Eng 180, 168–172 (1994)

    Article  Google Scholar 

  44. Guang, R., Jing-En, Z., Shengqi, X., Pengliang, L.: Formation of nanocrystalline and amorphous phase of Al-Pb-Si-Sn-Cu powder during mechanical alloying. Mater. Sci. Eng. A 416, 45–50 (2006)

    Article  Google Scholar 

  45. Mostaan, H., Karimzadeh, F., Abbasi, M.H.: Thermodynamic analysis of nanocrystalline and amorphous phase formation in Nb-Al system during mechanical alloying. Powder Metall. 55, 142–147 (2012)

    Article  Google Scholar 

  46. Miedema, A.R., De chatel, P.F., De boer, F.R.: Cohesion in alloys—fundamentals of a semi-empirical model. Phys. B Condens. Matter 100, 1–28 (1980)

    Google Scholar 

  47. Mahdouk, K., Gachon, J.C., Bouirden, L.: Enthalpies of formation of the Nb-Al intermetallic compounds. J. Alloy. Compd 268, 118–121 (1998)

    Article  Google Scholar 

  48. Brahmbhatt, P., Kumar Das, S., Pradhan, S.: Kinetic analysis of calorimetric measurements of niobium-aluminum multifilament strands. Int. J. Chem. Kin 46, 759–767 (2014)

    Article  Google Scholar 

  49. Mostaan, H., Karimzadeh, F., Abbasi, M.H.: Synthesis and formation mechanism of nanostructured Nb3Al intermetallic during mechanical alloying and kinetic study on its formation. Thermochim. Acta 529, 36–44 (2012)

    Article  Google Scholar 

  50. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci 46, 1–184 (2001)

    Article  Google Scholar 

  51. Hellstern, E., Schultz, L., Bormann, R.: Phase formation in mechanically alloyed Nb-Al powders. Appl. Phys. Lett 53, 1399–1401 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Toghyani Mournani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mournani, M.T., Golikand, A.N. & Asadabad, M.A. Comparative Thermodynamic Analysis of Nanocrystalline and Amorphous Phase Formation in Nb/Al and Nb/Sn Systems During Mechanical Alloying. J Supercond Nov Magn 29, 1467–1474 (2016). https://doi.org/10.1007/s10948-016-3441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3441-2

Keywords

Navigation