Skip to main content
Log in

Room Temperature Ferromagnetism in Cu-Doped In 2O3 Thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The In 2−xCu xO 3 (x = 0, 0.03, 0.05, and 0.07) thin films were deposited on a glass substrate under vacuum by electron beam evaporation technique. The influence of Cu concentration on the structural, chemical, and magnetic properties of In 2−xCu xO 3 was studied. The Cu concentration did not influence the host crystal structure; however, it does increase the oxygen vacancies and ferromagnetic strength in the In 2−xCu xO 3 system with Cu concentration. X-ray photoelectron spectroscopy revealed the dopant Cu has a Cu(II) state in the In 2O 3 host. The observed ferromagnetism in In 2−xCu xO 3 is similar to the higher oxidation semiconductors (Sn 1−xCu xO 2 and Ti 1−xCu xO 2) and is contrary to the lower oxidation semiconductor (Zn 1−xCu xO). Such a ferromagnetism is attributed to the intrinsic nature of the sample rather than any secondary magnetic phases existing in the films. The observed ferromagnetism in In 2−xCu xO 3 was attributed to the ferromagnetic exchange interaction between Cu 2+ ions via single free electron trapped oxygen vacancy. Increase in oxygen vacancies with Cu concentration leads to increase in such oxygen vacancy-mediated ferromagnetic pairs, resulting in increase in ferromagnetic strength with Cu concentration. However, if we increase Cu concentration above a critical level, Cu–O–Cu interaction leads to an antiferromagnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohno, H.: Scinece 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  2. Ohno, H., Munekata, H., Penney, T., Molnar, S.V., Chang, L.L.: Phys. Rev. Lett 68, 2664–2667 (1992)

    Article  ADS  Google Scholar 

  3. Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl. Phys. Lett 69, 363–365 (1996)

    Article  ADS  Google Scholar 

  4. Liu, Y., Yang, Y., Yang, J., Guan, Q., Liu, H., Yang, L., Zhang, Y., Wang, Y., Wei, M., Liu, X., Fei, L., Cheng, X.: J.Solid State Chem. 184, 1273–1278 (2011)

    Article  ADS  Google Scholar 

  5. Dalui, S., Rout, S., Silvestre, A.J., Lavareda, G., Pereira, L.C.J., Brogueira, P., Conde, O.: Appl. Surf. Sci 278, 127–131 (2013)

    Article  ADS  Google Scholar 

  6. Bao, N.N., Yi, J.B., Fan, H.M., Qin, X.B., Zhang, P., Wang, B.Y., Ding, J., Li, S.: Scripta Mater 66, 821–824 (2012)

    Article  Google Scholar 

  7. Philip, J., Punnoose, A., Kim, B.I., Reddy, K.M., Layne, S., Holmes, J.O., Satpati, B., Leclair, P.R., Santos, T.S., Moodera, J.S.: Nat. Mater 5, 298–304 (2006)

    Article  ADS  Google Scholar 

  8. Kohiki, S., Murakawa, Y., Hori, K., Shimooka, H., Tajiri, T., Deguchi, H., Oku, M., Arai, M., Mitome, M., Bando, Y.: Japan. J. Appl. Phys 44, L979–L981 (2005)

    Article  ADS  Google Scholar 

  9. Yoo, Y.K., Xue, Q., Lee, H.C., Cheng, S., Xiang, X.D., Dionne, G.F., Xu, S., He, J., Chu, Y.S., Preite, S.D., Lofland, S.E., Takeuchi, I.: Appl. Phys. Lett 86(1-3), 042506 (2005)

    Article  ADS  Google Scholar 

  10. He, J., Xu, S., Yoo, Y.K., Xue, Q., Lee, H.C., Cheng, S., Xiang, X.D., Dionne, G.F., Takeuchi, I.: Appl. Phys. Lett 86(1-3), 052503 (2005)

    Article  ADS  Google Scholar 

  11. Peleckis, G., Wang, X.L., Dou, S.X.: J. Magn. Magn. Mater 301, 308–311 (2006)

    Article  ADS  Google Scholar 

  12. Duhalde, S., Vignolo, M.F., Golmar, F., Chiliotte, C., Rodríguez Torres, C.E., Errico, L.A., Cabrera, A.F., Rentería, M., Sánchez, F.H., Weissmann, M.: Phys. Rev. B 72, 161313 (2005)

    Article  ADS  Google Scholar 

  13. Huang, L.M., Rosa, A.L., Ahuja, R.: Phys. Rev. B 74, 075206 (2006)

    Article  ADS  Google Scholar 

  14. Zhang, C.W., Kao, H., Dong, J.M., Li, P.: Phys. Status. Solidi B 246, 1652–1655 (2009)

    Article  ADS  Google Scholar 

  15. Sasaki, M., Yasui, K., Kohiki, S., Deguchi, H., Matsushima, S., Oku, M., Shishido, T.: J. Alloys Compd 334, 205– 210 (2002)

    Article  Google Scholar 

  16. Ye, F., Cai, X.M., Zhong, X., Tian, X.Q., Jing, S.Y., Huang, L.B., Roy, V.A.L., Zhang, D.P., Fan, P., Luo, J.T., Zheng, Z.H., Liang, G.X.: Thin Solid Films 556, 44–47 (2014)

    Article  ADS  Google Scholar 

  17. Zou, C. W., Wu, H. Z., Liang, F., Xue, S.W., Shao, L. X.: Appl. Phys. Lett 104, 222105 (2014)

    Article  ADS  Google Scholar 

  18. Gupta, R.K., Ghosh, K., Kahol, P.K.: Mater. Lett 64, 2022 (2010)

    Article  Google Scholar 

  19. Shim, I.B., Kim, C.S.: J. Magn. Magn. Mater. 272–276, e1571–e1572 (2004)

    Article  Google Scholar 

  20. Yan, S., Ge, S., Qiao, W., Zuo, Y., Xu, F., Xi, L.: J. Magn. Magn. Mater 323, 264–267 (2011)

    Article  ADS  Google Scholar 

  21. Coey, J.M.D., Venkatesan, M., Stamenov, P., Fitzgerald, C.B., Dorneles, L.S.: Phys. Rev. B 72, 024450 (2005)

    Article  ADS  Google Scholar 

  22. Hong, N.H., Sakai, J., Huong, N.T., Ruyter, A., Brize, V.: J. Phys. Condens. Matter. 18, 6897 (2006)

    ADS  Google Scholar 

  23. Prakash, R., Kumar, S., Ahmed, F., Lee, C.G., Song, J.: Thin Solid Films 519, 8243–8246 (2011)

    Article  ADS  Google Scholar 

  24. Zeng, F., Zhang, X., Wang, J., Wang, L. S., Zhang, L.: Nanotechnology 15, 596–600 (2004)

    Article  ADS  Google Scholar 

  25. Sharma, S., Chaudhary, S., Kashyap, S.C., Sharma, S.K.: J. Appl. Phys 109, 083905 (2011)

    Article  ADS  Google Scholar 

  26. Chakraborti, D., Narayan, J., Prater, J.T.: Appl. Phys. Lett 90, 062504 (2007)

    Article  ADS  Google Scholar 

  27. Mohanty, P., Kabiraj, D., Mandal, R.K., Kulriya, P.K., Sinha, A.S.K., Chandana, R.: J. Magn. Magn. Mater 355, 240–245 (2014)

    Article  ADS  Google Scholar 

  28. Buchholz, D.B., Chang, R.P.H., Song, J.Y., Ketterson, J.B.: Appl. Phys. Lett 87, 082504 (2005)

    Article  ADS  Google Scholar 

  29. Prashant, K.S., Ranu, K.D., Avinash, C.P.: J. Magn. Magn. Mater 321, 4001–4005 (2009)

    Article  Google Scholar 

  30. Yang, H., Xu, X., Wu, S., Wu, K., Ai, C., Miao, J., Jiang, Y.: J. Mater Sci 47, 530–533 (2012)

    Article  ADS  Google Scholar 

  31. Rodriguez Torres, C.E., Golmar, F., Cabrera, A.F., Errico, L., Mudarra Navarro, A.M., Renteria, M., Sanchez, F.H., Duhalde, S.: Appl. Surf. Sci. 254, 365–367 (2007)

    Article  ADS  Google Scholar 

  32. Li, Y., Deng, R., Tian, Y., Yao, B., Wu, T.: Appl. Phys. Lett 100, 172402 (2012)

    Article  ADS  Google Scholar 

  33. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Appl. Phys. Lett 84, 1332 (2004)

    Article  ADS  Google Scholar 

  34. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater 4, 173–179 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamil Nadu 603104, India, for providing financial support to carry out the present research work. The authors are thankful to VIT-SIF for providing XRD and diffused reflectance spectra (DRS) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, N.S., Kaleemulla, S., Amarendra, G. et al. Room Temperature Ferromagnetism in Cu-Doped In 2O3 Thin Films. J Supercond Nov Magn 28, 2089–2095 (2015). https://doi.org/10.1007/s10948-015-2988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-2988-7

Keywords

Navigation