Skip to main content
Log in

Room-temperature ferromagnetism in carbon- and nitrogen-doped rutile TiO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Marked room-temperature ferromagnetism (RTFM) was obtained in carbon- and nitrogen-doped rutile \(\hbox {TiO}_2\) powders. X-ray photoelectron spectroscopy measurements revealed the co-existence of considerable densities of states near the Fermi level (\(E_{\rm F}\)) and oxygen vacancies primarily induced by C- and N-doping. Density functional theory calculations showed that the local moments responsible for the observed RTFM in N-doped \(\hbox {TiO}_2\) were primarily attributed to the partially populated, spin-polarized Ti \(3d\) band. In addition to the unfilled Ti \(3d\) band, the spin splitting in C \(2p\) states near \(E_{\rm F}\) in C-doped \(\hbox {TiO}_2\), which may be induced by the \(p-p\) interaction between the C impurities and neighboring oxygen ions, results in Stoner band-splitting-type ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  2. A. Zunger, S. Lany, H. Raebiger, Physics 3, 53 (2010). and references therein

    Article  Google Scholar 

  3. C.F. Yu, T.J. Lin, S.J. Sun, H. Chou, J. Phys. D Appl. Phys. 40, 6497 (2007)

    Article  ADS  Google Scholar 

  4. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, J.H. Yin, Phys. Rev. Lett. 99, 127201 (2007)

    Article  ADS  Google Scholar 

  5. G. Drera, M.C. Mozzati, P. Galinetto, Y. Diaz-Fernandez, L. Malavasi, F. Bondino, M. Malvestuto, L. Sangaletti, Appl. Phys. Lett. 97, 012506 (2010)

    Article  ADS  Google Scholar 

  6. N.N. Bao, H.M. Fan, J. Ding, J.B. Yi, J. Appl. Phys. 109, 07C302 (2011)

    Google Scholar 

  7. Q.Y. Wen, H.W. Zhang, Q.H. Yang, D.E. Gu, Y.X. Li, Y.L. Liu, J. Shen, J.Q. Xiao, IEEE Trans. Magn. 45, 4096 (2009)

    Article  ADS  Google Scholar 

  8. L. Shen, R.Q. Wu, H. Pan, G.W. Peng, M. Yang, Z.D. Sha, Y.P. Feng, Phys. Rev. B 78, 073306 (2008)

    Article  ADS  Google Scholar 

  9. K.S. Yang, Y. Dai, B.B. Huang, M.H. Whangbo, Appl. Phys. Lett. 93, 132507 (2008)

    Article  ADS  Google Scholar 

  10. K.S. Yang, Y. Dai, B.B. Huang, M.H. Whangbo, J. Phys. Chem. C 113, 2624 (2009)

    Article  Google Scholar 

  11. K.S. Yang, Y. Dai, B.B. Huang, J. Phys. Chem. C 114, 19830 (2010)

    Article  Google Scholar 

  12. H. Peng, H.J. Xiang, S.H. Wei, S.S. Li, J.B. Xia, J. Li, Phys. Rev. Lett. 102, 017201 (2009)

    Article  ADS  Google Scholar 

  13. J.A. Chan, S. Lany, A. Zunger, Phys. Rev. Lett. 103, 016404 (2009)

    Article  ADS  Google Scholar 

  14. R.G. Palgrave, D.J. Payne, R.G. Egdell, J. Mater. Chem. 19, 8418 (2009)

    Article  Google Scholar 

  15. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 11414 (2005)

    Article  Google Scholar 

  16. G. Tyuliev, S. Angelov, Appl. Surf. Sci. 32, 381 (1998)

    Article  ADS  Google Scholar 

  17. M. Naeem, S.K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, S.I. Shah, Nanotechnology 17, 2675 (2006)

    Article  ADS  Google Scholar 

  18. C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Rev. B 70, 085116 (2004)

    Article  ADS  Google Scholar 

  19. A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Appl. Phys. Lett. 95, 262111 (2009)

    Article  ADS  Google Scholar 

  20. A.I. Boronin, V.I. Bukhityarov, A.L. Vishnevskii, G.K. Boreskov, V.I. Savchenko, Surf. Sci. 201, 195 (1988)

    Article  ADS  Google Scholar 

  21. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, RStC Smart, Appl. Surf. Sci. 257, 887 (2010)

    Article  ADS  Google Scholar 

  22. J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 024450 (2005)

    Article  ADS  Google Scholar 

  23. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004)

    Article  ADS  Google Scholar 

  24. J.M.D. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, J. Phys. D Appl. Phys. 41, 134012 (2008)

    Article  ADS  Google Scholar 

  25. K.E. Smith, J.L. Mackay, V.E. Henrich, Phys. Rev. B 35, 5822 (1987)

    Article  ADS  Google Scholar 

  26. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides, 1st edn. (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  27. E.C. Stoner, Proc. R. Soc. A 165, 372 (1938)

    Article  ADS  Google Scholar 

  28. E.C. Stoner, Proc. R. Soc. A 169, 339 (1939)

    Article  ADS  MATH  Google Scholar 

  29. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  33. C.J. Calzado, N.C. Hernandez, J.F. Sanz, Phys. Rev. B 77, 045118 (2008)

    Article  ADS  Google Scholar 

  34. K.S. Yang, Y. Dai, B.B. Huang, Y.P. Feng, Phys. Rev. B 81, 033202 (2010)

    Article  ADS  Google Scholar 

  35. K.S. Yang, Y. Dai, B.B. Huang, S.H. Han, J. Phys. Chem. B 110, 24011 (2006)

    Article  Google Scholar 

  36. I. Slipukhina, Ph Mavropoulos, S. Blügel, M. Ležaić, Phys. Rev. Lett. 107, 137203 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council of Taiwan, Republic of China under the Grant Nos. NSC98-2112-M-009-004-MY3, 101-2112-M-003-007, and MOE-ATP program operated at NCTU, Taiwan. The XPS measurements were performed at instruments center of National Chung Cheng University, Taiwan. We gratefully acknowledge the insightful comments from the members of the Solid State Laboratory at NCTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiu-Jen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JB., Wu, KC., Mi, JW. et al. Room-temperature ferromagnetism in carbon- and nitrogen-doped rutile TiO2 . Appl. Phys. A 118, 725–731 (2015). https://doi.org/10.1007/s00339-014-8788-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8788-2

Keywords

Navigation