Skip to main content
Log in

Oxygen vacancy induced room temperature ferromagnetism in (In1−xNix)2O3 thin films

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nickel doped indium oxide thin films (In1−xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1−xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1−xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1−xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C Guglieri and J Chaboy J. Phys. Chem. C 114 19629 (2010)

    Article  Google Scholar 

  2. Q Wang, Q Sun, G Chen, Y Kawazoe and P Jena Phys. Rev. B 77 205411 (2008)

    Article  ADS  Google Scholar 

  3. A K Das and A Srinivasan J. Magn. Magn. Mater. 404 190 (2016)

    Article  Google Scholar 

  4. N H Hong, J Sakai and F Gervais J. Magn. Magn. Mater. 316 214 (2007)

    Article  ADS  Google Scholar 

  5. J Li, G Bai, Y Jiang, Y Du, C Wu and M Yan J. Magn. Magn. Mater. 426 545 (2017)

    Article  ADS  Google Scholar 

  6. D Bérardan, E Guilmeau and D Pelloquin J. Magn. Magn. Mater. 320 983 (2008)

    Article  ADS  Google Scholar 

  7. P Hajra, P Brahma, S Dutta, S Banerjee and D Chakravorty J. Magn. Magn. Mater. 324 1425 (2012)

    Article  ADS  Google Scholar 

  8. K Nadeem, A Ullah, M Mushtaq, M Kamran, S S Hussain and M Mumtaz J. Magn. Magn. Mater. 417 6 (2016)

    Article  ADS  Google Scholar 

  9. H Qin, Z Zhang, X Liu, Y Zhang and J Hu J. Magn. Magn. Mater. 322 1994 (2010)

    Article  ADS  Google Scholar 

  10. J Stankiewicz, F Villuendas, J Bartolomé and J Sesé J. Magn. Magn. Mater. 310 2084 (2007)

    Article  ADS  Google Scholar 

  11. A M A Hakeem J. Magn. Magn. Mater. 322 709 (2010)

    Article  ADS  Google Scholar 

  12. N H Hong J. Magn. Magn. Mater. 303 338 (2006)

    Article  ADS  Google Scholar 

  13. P Mohanty, D Kabiraj, R K Mandal, P K Kulriya, A S K Sinha and C Rath J. Magn. Magn. Mater. 355 240 (2014)

    Article  ADS  Google Scholar 

  14. J R Bellingham, A P Mackenzie and W A Phillips Appl. Phys. Lett. 58 2506 (1991)

    Article  ADS  Google Scholar 

  15. M Venkatesan, C B Fitzgerald, J G Lunney and J M D Coey Phys. Rev. Lett. 93 177206 (2004)

    Article  ADS  Google Scholar 

  16. E Wahlström, E K Vestergaard, R Schaub, A Rønnau, M Vestergaard, E Lægsgaard, I Stensgaard and F Besenbacher Science 303 511 (2004)

    Article  ADS  Google Scholar 

  17. N S Krishna, S Kaleemulla, G Amarendra, N M Rao, M Kuppan, M R Begam and D S Reddy Mater. Sci. Semicond. Process. 18 22 (2014)

    Article  Google Scholar 

  18. S Sun, P Wu and P Xing Appl. Phys. Lett. 101 132417 (2012)

    Article  ADS  Google Scholar 

  19. A Sudha, S L Sharma and T K Maity Mater. Lett. 157 19 (2015)

    Article  Google Scholar 

  20. Z Fanhao, X Zhang, W Jin, W Lisheng and Z Lina Nanotechnology 15 596 (2004)

    Article  Google Scholar 

  21. M C Biesinger, B P Payne, A P Grosvenor, L W M Lau, A R Gerson and R S C Smart Appl. Surf. Sci. 257 2717 (2011)

    Article  ADS  Google Scholar 

  22. S Sharma, S Chaudhary, S C Kashyap and S K Sharma J. Appl. Phys. 109 083905 (2011)

    Article  ADS  Google Scholar 

  23. A S A C Diniz and C J Kiely Renew. Energy 29 2037 (2004)

    Article  Google Scholar 

  24. J Tauc Amorphous and Liquid Semiconductors (ed.) J Tauc (New York, NY, USA: Plenum Press) p 159 (1974)

  25. K J Lethy, D Beena, R V Kumar, V P M Pillai, V Ganesan and V Sathe Appl. Surf. Sci. 254 2369 (2008)

    Article  ADS  Google Scholar 

  26. J R Rani, V P M Pillai, R S Ajimsha, M K Jayaraj and R S Jayasree J. Appl. Phys. 100 014302 (2006)

    Article  ADS  Google Scholar 

  27. D Liu, W Lei, B Zou, S Yu, J Hao, K Wang, B Liu, Q Cui and G Zou J. Appl. Phys. 104 083506 (2008)

    Article  ADS  Google Scholar 

  28. D Beena, K J Lethy, R Vinodkumar, A P Detty, V P M Pillai and V Ganesan J. Alloys Compd. 489 215 (2010)

    Article  Google Scholar 

  29. S A Ahmed J. Magn. Magn. Mater. 402 178 (2016)

    Article  ADS  Google Scholar 

  30. B Kisan, P Saravanan, S Layek, H C Verma, D Hesp, V Dhanak, S Krishnamurthy and A Perumal J. Magn. Magn. Mater. 384 296 (2015)

    Article  ADS  Google Scholar 

  31. C Sudakar, P Kharel, R Suryanarayanan, J S Thakur, V M Naik, R Naik and G Lawes J. Magn. Magn. Mater. 320 L31 (2008)

    Article  ADS  Google Scholar 

  32. H L Hartangel, A L Daar, A K Jain and C Jagadish Semiconducting Transparent Thin Films (ed.) H L Hartangel (Bristol, Philadelphia: Taylor & Francis) p 14 (1995)

  33. N H Hong, J Sakai, N Poirot and V Brizé Phys. Rev. B 73 132404 (2006)

    Article  ADS  Google Scholar 

  34. S H Babu, S Kaleemulla, N M Rao and C Krishnamoorthi J. Electron. Mater. 45 5703 (2016)

    Article  ADS  Google Scholar 

  35. M Kuppan, S Kaleemulla, N M Rao, C Krishnamoorthi, G V Rao, I Omkaram and D S Reddy J. Supercond. Nov. Magn. 30 981 (2017)

    Article  Google Scholar 

  36. M Kuppan, S Kaleemulla, N M Rao, C Krishnamoorthi, I Omkaram and D S Reddy J. Mater. Sci. Mater. Electron. 28 2976 (2017)

    Article  Google Scholar 

  37. Q Y Wen, H W Zhang, Q H Yang, Y Q Song and J Q Xiao J. Magn. Magn. Mater. 321 3110 (2009)

    Article  ADS  Google Scholar 

  38. L M Huang, C M Araújo and R Ahuja Eur. Phys. Lett. 87 27013 (2009)

    Article  ADS  Google Scholar 

  39. R K Singhal, A Samariya, S Kumar, S C Sharma, Y T Xing, U P Deshpande, T Shripathi and E Saitovitch Appl. Surf. Sci. 257 1053 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to UGC-DAE-CSR, IGCAR, Kalpakkam, 603102, Tamil Nadu, India for providing financial support under Project Sanction Number (CSR-KN/CRS-72/2015-2016/809) to carry out the present work. The authors are highly thankful to VIT-SIF for providing, XRD, SEM and DRS facilities to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kaleemulla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Kaleemulla, S., Kuppan, M. et al. Oxygen vacancy induced room temperature ferromagnetism in (In1−xNix)2O3 thin films. Indian J Phys 92, 619–628 (2018). https://doi.org/10.1007/s12648-017-1145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1145-5

Keywords

PACS Nos.

Navigation