Skip to main content
Log in

Effect of Sintering Temperature on the Microstructure, Electrical, and Magnetic Properties of Bi 0 . 8 5 Eu 0 . 1 5 FeO 3 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline Bi 0.85Eu 0.15FeO 3 ceramics were synthesized by solid-state reaction method with rapid liquid phase sintering process at various sintering temperatures. The dependence of structural, microstructural, electrical, and magnetic properties on sintering temperature was systematically investigated. X-ray diffraction measurements reveal that single perovskite phase is developed in Bi 0.85Eu 0.15FeO 3 ceramics sintered at 850 and 870 C, while secondary phases can be detected in the samples sintered at 890 C due to the volatilization of Bi 3+ ions, and the crystallinity increases with increasing sintering temperature from 850 to 890 °C. The scanning electron microscopy investigation has suggested that the grain size increases with increasing sintering temperature from 855 t o 890 C; while the pore size decreases with increasing sintering temperature from 850 to 870 C and then increases with a further increase of sintering temperature. The electrical and magnetic measurements show that the leakage current, dielectric constant, dielectric loss, and magnetic properties are strongly dependent on the sintering temperature. The Bi 0.85Eu 0.15FeO 3 ceramics sintered at 870 C have the lower leakage current, higher dielectric constant, and lower dielectric loss. The room temperature magnetization increases with increasing sintering temperature from 850 to 890 °C. The possible reason for all the above observations was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, A., Varshney, D.: Ceram. Int. 38, 3935 (2012)

    Article  Google Scholar 

  2. Arora, M., Sati, P.C., Chauhan, S., Chhoker, S., Panwar, A.K., Kumar, M.: J. Supercond. Nov. Magn. 26, 443 (2013)

    Article  Google Scholar 

  3. Kumar, A., Yadav, K.L.: J. Alloy. Compd. 554, 138 (2013)

    Article  Google Scholar 

  4. Singh, V., Sharma, S., Dwivedi, R.K., Kumar, M., Kotnala, R.K., Mehra, N.C., Tandon, R.P.: J. Supercond. Nov. Magn. 26, 657 (2013)

    Article  Google Scholar 

  5. Jha, P.A., Jha, P.K., Jha, A.K., Dwivedi, R.K.: Mater. Res. Bull 48, 101 (2013)

    Article  Google Scholar 

  6. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S.C., Singh, H., Jewariya, M., Yadav, K.L.: Solid State Commun. 152, 525 (2012)

    Article  ADS  Google Scholar 

  7. Liu, J., Li, M.Y., Hu, Z.Q., Pei, L., Wang, J., Liu, X.L., Zhao, X.Z.: Appl. Phys. A 102, 713 (2011)

    Article  ADS  Google Scholar 

  8. Durga Rao, T., Karthik, T., Asthana, S.: J. Rare Earth 31, 370 (2013)

    Article  Google Scholar 

  9. Liu, J., Fang, L., Zheng, F.G., Ju, S., Shen, M.R.: Appl. Phys. Lett. 022511, 95 (2009)

    Article  Google Scholar 

  10. Uniyal, P., Yadav, K.L.: Vol. 105, p 07D914 (2009)

  11. Zhang, X.Q., Sui, Y., Wang, X.J., Wang, Y., Wang, Z.: J. Alloy. Compd. 507, 157 (2010)

    Article  Google Scholar 

  12. Zhang, Q., Zhang, Y., Wang, X.G., Ma, T., Yuan, Z.B.: Ceram. Int. 38, 4765 (2012)

    Article  Google Scholar 

  13. Lee, Y.J., Kim, J.S., Han, S.H., Kang, H.W., Lee, H.G., Cheon, C.: J. Korean Phys. Soc. 61, 947 (2012)

    Article  ADS  Google Scholar 

  14. Yasin Shami, M., Awan, M.S., Anis-Ur-Rehman, M.: J. Electron. Mater 41, 2216 (2012)

    Article  ADS  Google Scholar 

  15. Fu, C.L., Long, X.L., Cai, W., Chen, G., Deng, X.L.: Ferroelectrics 445, 114 (2013)

    Article  Google Scholar 

  16. Zhang, S.X., Luo, W.J., Wang, D.L., Ma, Y.W.: Mater. Lett. 63, 1820 (2009)

    Article  Google Scholar 

  17. Liu, J., Li, M.Y., Hu, Z.Q., Pei, L., Wang, J., Liu, X.L., Zhao, X.Z.: Appl. Phys. A 102, 713 (2011)

    Article  ADS  Google Scholar 

  18. Jha, P.A., Jha, A.K.: J. Mater. Sci.: Mater. Electron. 24, 1511 (2013)

    Google Scholar 

  19. Mishra, P., Sonia, Kumar: P.: J. Alloy. Compd 545, 210 (2012)

    Google Scholar 

  20. Huang, F.Z., Lu, X.M., Wang, Z., Lin, W.W., Kan, Y., Bo, H.F., Cai, W., Zhu, J.S.: Appl. Phys. A 97, 699 (2009)

    Article  ADS  Google Scholar 

  21. Yang, H.B., Lin, Y., Wang, F., Luo, H.J.: Mater. Manuf. Process 23, 489 (2008)

    Article  Google Scholar 

  22. Singh, V.R., Dixit, A., Garg, A., Agrawal, D.C.: Appl. Phys. A 90, 197 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Project Nos. 11305142, 11175159, and 51302250), Zhengzhou Administration of Science and Technology of Henan Province of China (131PPTGG411-10), and Key Members of the Outstanding Young Teacher of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.Y., Liu, H.Z., Du, J.F. et al. Effect of Sintering Temperature on the Microstructure, Electrical, and Magnetic Properties of Bi 0 . 8 5 Eu 0 . 1 5 FeO 3 Ceramics. J Supercond Nov Magn 27, 2105–2110 (2014). https://doi.org/10.1007/s10948-014-2558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2558-4

Keywords

Navigation