Skip to main content
Log in

Temperature Dependence of \(\sqrt{2} \times \sqrt{2}\) Phase in Superconducting K0.8Fe1.6Se2 Single Crystal

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We report the structural phase transition properties of the newly discovered K0.8Fe1.6Se2 superconductor (T c =31.8 K) using synchrotron single-crystal X-ray diffraction. The basic structure of the sample at room temperature is found to be tetragonal ThCr2Si2-type, modulated by a vacancy ordering induced superlattice structure together with a coexisting minority phase having a \(\sqrt{2} \times \sqrt{2}\) ordering. At 520 K, the reflections corresponding to the \(\sqrt{2} \times \sqrt{2}\) phase merge with the parent tetragonal phase. The superlattice peaks corresponding to the vacancy ordering disappear at 580 K, indicating an order-disorder phase transition at this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnston, D.C.: The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010). doi:10.1080/00018732.2010.513480

    Article  ADS  Google Scholar 

  2. Paglione, J., Greene, R.L.: High-temperature superconductivity in iron-based materials. Nat. Phys. 6, 645–658 (2010). doi:10.1038/nphys1759

    Article  Google Scholar 

  3. Guo, J., et al.: Superconductivity in the iron selenide K x Fe2Se2 (0×1.0). Phys. Rev. B, Condens. Matter 82, 180520 (2010). doi:10.1103/PhysRevB.82.180520

    Article  ADS  Google Scholar 

  4. Mizuguchi, Y., et al.: Transport properties of the new Fe-based superconductor K x Fe2Se2 (t c =33 K). Appl. Phys. Lett. 98, 042511 (2011). doi:10.1063/1.3549702

    Article  ADS  Google Scholar 

  5. Krzton-Maziopa, A., et al.: Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with t c =27 K. J. Phys. Condens. Matter 23, 052203 (2011). doi:10.1088/0953-8984/23/5/052203

    Article  ADS  Google Scholar 

  6. Shermadini, Z., et al.: Coexistence of magnetism and superconductivity in the iron-based compound Ce0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011). doi:10.1103/physrevlett.106.117602

    Article  ADS  Google Scholar 

  7. Wang, A.F., et al.: Superconductivity at 32 K in single-crystalline Rb x Fe2−y Se2. Phys. Rev. B 83, 060512 (2011). doi:10.1103/PhysRevB.83.060512

  8. Wang, H.-D., et al.: Superconductivity at 32 K and anisotropy in Tl0.58Rb0.42Fe1.72Se2 crystals. Europhys. Lett. 47004 (2011). doi:10.1209/0295-5075/93/47004

  9. Mazin, I.: Iron superconductivity weathers another storm. Physics 4 (2011). doi:10.1103/Physics.4.26

  10. Stajic, J., Coontz, R., Osborne, I.: Happy 100th, superconductivity! Science 332, 189 (2011). doi:10.1126/science.332.6026.189

    Article  ADS  Google Scholar 

  11. Bao, W., et al.: A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chin. Phys. Lett. 28(2), 086104 (2011)

    Article  ADS  Google Scholar 

  12. Bacsa, J., et al.: Cation vacancy order in the K0.8+x Fe1.6−y Se2 system: five-fold cell expansion accommodates 20 % tetrahedral vacancies. Chem. Sci. (2011). doi:10.1039/c1sc00070e

    Google Scholar 

  13. Wang, D.M., He, J.B., Xia, T.L., Chen, G.F.: Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide K x Fe2−y Se2. Phys. Rev. B, Condens. Matter 83, 132502 (2011). doi:10.1103/PhysRevB.83.132502

    Article  ADS  Google Scholar 

  14. Yu, et al.: Iron-vacancy superstructure and possible room-temperature antiferromagnetic order in superconducting Cs y Fe2−x Se2. Phys. Rev. B, Condens. Matter 83, 144410 (2011). doi:10.1103/PhysRevB.83.144410

    Article  Google Scholar 

  15. Ricci, A., et al.: Intrinsic phase separation in superconducting K0.8Fe1.6Se2 (t c =31.8 K) single crystals. Supercond. Sci. Technol. 24, 082002 (2011). doi:10.1088/0953-2048/24/8/082002

    Article  ADS  Google Scholar 

  16. Ricci, A., et al.: Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused X-ray diffraction. Phys. Rev. B, Condens. Matter 84, 060511 (2011). doi:10.1103/physrevb.84.060511

    Article  ADS  Google Scholar 

  17. Innocenti, D., Ricci, A., Poccia, N., Campi, G., Fratini, M., Bianconi, A.: J. Supercond. Nov. Magn. 22, 529 (2009). ISSN 1557-1939. doi:10.1007/s10948-009-0474-9

    Article  Google Scholar 

  18. Wang, F., et al.: The electron pairing of K x Fe2−y Se2. Europhys. Lett. 57003 (2011). doi:10.1209/0295-5075/93/57003

  19. Maier, T.A., Graser, S., Hirschfeld, P.J., Scalapino, D.J.: d-Wave pairing from spin fluctuations in the K x Fe2−y Se2 superconductors. Phys. Rev. B, Condens. Matter 83, 100515 (2011). doi:10.1103/PhysRevB.83.100515

    Article  ADS  Google Scholar 

  20. Häggström, L.: A Mössbauer study of antiferromagnetic ordering in iron deficient TlFe2−x Se2. J. Magn. Magn. Mater. 98, 37–46 (1991). doi:10.1016/0304-8853(91)90423-8

    Article  Google Scholar 

  21. Shoemaker, D.P., et al.: Phase relations in K x Fe2−y Se2 and the structure of superconducting K x Fe2Se2 via high-resolution synchrotron diffraction. Phys. Rev. B, Condens. Matter 86, 184511 (2012). doi:10.1103/PhysRevB.86.184511

    Article  ADS  Google Scholar 

  22. Ricci, A., Fratini, M., Bianconi, A.: The tetragonal to orthorhombic structural phase transition in multiband FeAs-based superconductors. J. Supercond. Nov. Magn. 22, 305–308 (2009). doi:10.1007/s10948-008-0434-9

    Article  Google Scholar 

  23. Ricci, A., et al.: Structural phase transition and superlattice misfit strain of RFeAsO (R=La,Pr,Nd,Sm). Phys. Rev. B, Condens. Matter 82, 144507 (2010). doi:10.1103/PhysRevB.82.144507

    Article  ADS  Google Scholar 

  24. Ricci, A., et al.: On the possibility of a new multiband heterostructure at the atomic limit made of alternate CuO2 and FeAs superconducting layers. Supercond. Sci. Technol. 23, 052003 (2010). doi:10.1088/0953-2048/23/5/052003

    Article  ADS  Google Scholar 

  25. Rotter, M., et al.: Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Physical Review B 78, 020503 (2008). doi:10.1103/PhysRevB.78.020503

    Article  ADS  Google Scholar 

  26. Zhang, A.M., et al.: Superconductivity at 44 K in k intercalated FeSe system with excess Fe. Sci. Rep. 3, 1216 (2010). doi:10.1038/srep01216

    Google Scholar 

  27. Wang, D.M., et al.: Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide. Phys. Rev. B, Condens. Matter 83, 132502 (2011). doi:10.1103/PhysRevB.83.132502

    Article  ADS  Google Scholar 

  28. Joseph, B., et al.: Evidence of local structural inhomogeneity in FeSe1−x Te x from extended X-ray absorption fine structure. Phys. Rev. B, Condens. Matter 82, 020502 (2010). doi:10.1103/PhysRevB.82.020502

    Article  ADS  Google Scholar 

  29. Ryan, D.H., et al.: 57Fe Mössbauer study of magnetic ordering in superconducting K0.80Fe1.76Se2.00 single crystals. Phys. Rev. B, Condens. Matter 83, 104526 (2011). doi:10.1103/PhysRevB.83.104526

    Article  ADS  Google Scholar 

  30. Ksenofontov, V., et al.: Phase separation in superconducting and antiferromagnetic Rb0.8Fe1.6Se2 probed by Mössbauer spectroscopy. Phys. Rev. B, Condens. Matter 84, 180508 (2011). doi:10.1103/physrevb.84.180508

    Article  ADS  Google Scholar 

  31. Jesche, A., Krellner, C., de Souza, M., Lang, M., Geibel, C.: Coupling between the structural and magnetic transition in CeFeAsO. Phys. Rev. B, Condens. Matter 81, 134525 (2010). doi:10.1103/PhysRevB.81.134525

    Article  ADS  Google Scholar 

  32. Tian, W., et al.: Interplay of Fe and Nd magnetism in NdFeAsO single crystals. Phys. Rev. B, Condens. Matter 82, 060514 (2010). doi:10.1103/PhysRevB.82.060514

    Article  ADS  Google Scholar 

  33. Yan, X.W., Gao, M., Lu, Z.Y., Xiang, T.: Electronic structures and magnetic order of ordered-Fe-vacancy ternary iron selenides TlFe1.5Se2 and AFe1.5Se2 (A = K, Rb, or Cs). Phys. Rev. Lett. 106, 087005 (2011). doi:10.1103/PhysRevLett.106.087005

    Article  ADS  Google Scholar 

  34. Iadecola, A., et al.: Large local disorder in superconducting K0.8Fe1.6Se2 studied by extended X-ray absorption fine structure. J. Phys. Condens. Matter 24, 115701 (2012). doi:10.1088/0953-8984/24/11/115701

    Article  ADS  Google Scholar 

  35. Fratini, M., et al.: Scale-free structural organization of oxygen interstitials in La2CuO4+y . Nature 466, 841–844 (2010). doi:10.1038/nature09260

    Article  ADS  Google Scholar 

  36. Poccia, N., et al.: Optimum inhomogeneity of local lattice distortions in La2CuO4+y . Proc. Natl. Acad. Sci. USA 109, 15685–15690 (2012). doi:10.1073/pnas.1208492109

    Article  ADS  Google Scholar 

  37. Ricci, A., Poccia, N., Ciasca, G., Fratini, M., Bianconi, A.: The microstrain-doping phase diagram of the iron pnictides: heterostructures at atomic limit. J. Supercond. Nov. Magn. 22, 589–593 (2009). doi:10.1007/s10948-009-0473-x

    Article  Google Scholar 

  38. Poccia, N., Ricci, A., Bianconi, A.: Adv. Condens. Matter Phys. 2010, 1 (2010). ISSN 1687-8108 doi:10.1155/2010/261849

    Article  Google Scholar 

  39. Ricci, A., et al.: Multiscale distribution of oxygen puddles in 1/8 doped YBa2Cu3O6.67. Sci. Rep. 3, 2383 (2013). doi:10.1038/srep02383

    Article  ADS  Google Scholar 

  40. Saini, N.L., et al.: Temperature dependent local Cu–O displacements from underdoped to overdoped La–Sr–Cu–O superconductor. Eur. Phys. J. B, Cond. Matter Complex Syst. 36, 75 (2003). doi:10.1140/epjb/e2003-00318-9

    Article  ADS  Google Scholar 

  41. Campi, G., et al.: Study of temperature dependent atomic correlations in MgB2. Eur. Phys. J. B, Condensed Matter Complex Syst. 52, 15 (2006). doi:10.1140/epjb/e2006-00269-7

    Article  Google Scholar 

  42. Agrestini, S., et al.: Sc doping of MgB2: the structural and electronic properties of Mg1−x Sc x B2. J. Phys. Chem. Solids 65, 1479 (2004). doi:10.1016/j.jpcs.2003.09.033

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricci, A., Joseph, B., Poccia, N. et al. Temperature Dependence of \(\sqrt{2} \times \sqrt{2}\) Phase in Superconducting K0.8Fe1.6Se2 Single Crystal. J Supercond Nov Magn 27, 1003–1007 (2014). https://doi.org/10.1007/s10948-013-2426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2426-7

Keywords

Navigation