Skip to main content
Log in

The Microstrain-Doping Phase Diagram of the Iron Pnictides: Heterostructures at Atomic Limit

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The 3D phase diagram of iron pnictides where the critical temperature depends on charge density and microstrain in the active FeAs layers is proposed. The iron pnictides superconductors are shown to be a practical realization of a heterostructure at the atomic limit made of a superlattice of FeAs layers intercalated by spacer layers. We have focussed our interest on the A1−x B x Fe2As2 (122) families and we show that FeAs layers have a tensile microstrain due to the misfit strain between the active layers and the spacers. We have identified the critical range of doping and microstrain where the critical temperature gets amplified to its maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamihara, Y., : Iron-based layered superconductor LaO1−x F x FeAs (x=0.05−0.12) with T c =26 K. J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. Bianconi, A.: Process of increasing the critical temperature T c of a bulk superconductor by making metal heterostructures at the atomic limit. United State Patent No.:US6, 265, 019 B1 (2001)

    Google Scholar 

  3. Tokura, Y., Arima, T.: New classification method for layered copper oxide compounds and its application to design of new high T c superconductors. Jpn. J. Appl. Phys. 29, 2388 (1990). doi:10.1143/JJAP.29.2388

    Article  ADS  Google Scholar 

  4. Bianconi, A.: On the possibility of new high T c superconductors by producing metal heterostructures as in the cuprate perovskites. Solid State Commun. 89, 933 (1994)

    Article  ADS  Google Scholar 

  5. An, J.M., Pickett, W.E.: Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86, 4366 (2001)

    Article  ADS  Google Scholar 

  6. Bianconi, A., Di Castro, D., Agrestini, S., Campi, G., Saini, N.L., Saccone, A., De Negri, S., Giovannini, M.: A superconductor made by a metal heterostructure at the atomic limit tuned at the ‘shape resonance’: MgB2. J. Phys., Condens. Matter 13, 7383 (2001)

    Article  ADS  Google Scholar 

  7. Okado, H., : Superconductivity under high pressure in LaFeAsO. J. Phys. Soc. Jpn. 77, 113712 (2008). doi:10.1143/JPSJ.77.113712

    Article  ADS  Google Scholar 

  8. Ren, Z.-A., : Novel superconductivity and phase diagram in the iron-based arsenic-oxides ReFeAsO1−δ (Re = rare earth metal) without F-doping. Europhys. Lett. 83, 17002 (2008). doi:10.1209/0295-5075/83/17002

    Article  ADS  Google Scholar 

  9. Hwang, H.Y., : Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914 (1995)

    Article  ADS  Google Scholar 

  10. Osbourn, G.C.: Strained-layer superlattices: A brief review. IEEE J. Quantum Electron. QE-22, 1677 (1986)

    Article  ADS  Google Scholar 

  11. Bianconi, A., Bianconi, G., Caprara, S., Di Castro, D., Oyanagi, H., Saini, N.L.: The stripe critical point for cuprates. J. Phys., Condens. Matter 12, 10655 (2000)

    Article  ADS  Google Scholar 

  12. Poccia, N., Fratini, M.: The misfit strain critical point in the 3D phase diagrams of cuprates. J. Supercond. Novel Magn. 22, 1557 (2009). doi:10.1007/s10948-008-0435-8

    Article  Google Scholar 

  13. Fratini, M., : The Feshbach resonance and nanoscale phase separation in a polaron liquid near the quantum critical point for a polaron Wigner crystal. J. Phys., Conf. Ser. 108, 012036 (2008). doi:10.1088/1742-6596/108/1/012036

    Article  ADS  Google Scholar 

  14. Kugel, K.I., : Model for phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors. Phys. Rev. B 78, 165124 (2008)

    Article  ADS  Google Scholar 

  15. Kugel, K.I., : Two-band model for the phase separation induced by the chemical mismatch pressure in different cuprate superconductors. Supercond. Sci. Technol. 22, 014007 (2009). doi:10.1088/09532048/22/1/014007

    Article  ADS  Google Scholar 

  16. Agrestini, S., : High T c superconductivity in a critical range of micro-strain and charge density in diborides. J. Phys., Condens. Matter 13, 11689 (2001)

    Article  ADS  Google Scholar 

  17. Sasmal, K., : Superconducting Fe-based compounds (A1−x Sr x )Fe2As2 with A=K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett. 101, 107007 (2008)

    Article  ADS  Google Scholar 

  18. Rotter, M., Tegel, M., Johrend, D.: Superconductivity at 38 K in the iron arsenide (Ba1−x K x )Fe2As2. Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

  19. Luo, H., Wang, Z., Yang, H., Cheng, P., Zhu, X., Wen, H.-H.: Growth and characterization of A1−x K x Fe2As2 (A = Ba, Sr) single crystals with x=0−0.4. Supercond. Sci. Technol. 21, 125014 (2008). doi:10.1088/0953-2048/21/12/125014

    Article  ADS  Google Scholar 

  20. Wu, G., Liu, R.H., Chen, H., Yan, Y.J., Wu, T., Xie, Y.L., Ying, J.J., Wang, X.F., Fang, D.F., Chen, X.H.: Transport properties and superconductivity in Ba1−x M x Fe2As2 (M = La and K) with double FeAs layers. arXiv:0806.1459 [cond-mat] (2008)

  21. Wu, G., Chen, H., Wu, T., Xie, Y.L., Yan, Y.J., Liu, R.H., Wang, X.F., Ying, J.J., Chen, X.H.: Different resistivity response to spin-density wave and superconductivity at 20 K in Ca1−x Na x Fe2As2. J. Phys., Condens. Matter 20, 422201 (2008)

    Article  ADS  Google Scholar 

  22. Pitcher, M.J., Parker, D.R., Adamson, P., Herkelrath, S.J.C., Boothroyd, A.T., Clarke, S.J.: Structure and superconductivity of LiFeAs. Chem. Commun. 5918 (2008). doi:10.1039/b813153h

  23. Bianconi, A., : A quantum phase transition driven by the electron lattice interaction gives high T C superconductivity. J. Alloys Comp. 537, 317–318 (2001). doi:10.1016/S0925-8388(00)01383-9

    Google Scholar 

  24. Lee, C.-H., : Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1−y (Ln = La, Nd). J. Phys. Soc. Jpn. 77, 083704 (2008)

    Article  ADS  Google Scholar 

  25. Caivano, R., : Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors. Supercond. Sci. Technol. 22, 014004 (2009). doi:10.1088/0953-2048/22/1/014004

    Article  ADS  Google Scholar 

  26. Ekins, N.J., : Strain-balanced criteria for multiple quantum well structures and its signature in X-ray rocking curves. Cryst. Growth Des. 2, 287 (2002)

    Article  Google Scholar 

  27. Qi, Y., Xu, C.: Global phase diagram for magnetism and lattice distortion of Fe-pnictide materials. arXiv:0812.0016v3 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricci, A., Poccia, N., Ciasca, G. et al. The Microstrain-Doping Phase Diagram of the Iron Pnictides: Heterostructures at Atomic Limit. J Supercond Nov Magn 22, 589–593 (2009). https://doi.org/10.1007/s10948-009-0473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-009-0473-x

Keywords

Navigation