Skip to main content
Log in

Quantum-chemical study of the silver trifluoroacetate dimer

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The results of quantum-chemical calculations of the formation energy, equilibrium structure, and potential surface sections along the nonrigid degrees of freedom of the silver trifluoroacetate dimer are presented. Calculations were performed by the B3LYP method with the cc-pVTZ correlation-coherent basis for C, O, and F atoms using the basis and relativistic effective core potentials Stuttgart 1997 RSC for Ag atoms, and, for comparison, by the HF method in the 6-31G(d) basis and MP2 method in the 6-311G(df) basis for C, O, and F atoms using the basis and relativistic effective core potentials SBKJC for Ag atoms. The eight-membered ring is a rigid planar fragment with a bond order of 0.2 between the silver nuclei. The nearly free internal rotation of the CF3 group affects the geometrical parameters of the ring. It was substantiated that in electron diffraction experiments, the difficulties of interpretation could be explained not only by the presence of decomposition products in the sample, but also by possible oligomerization of silver trifluoroacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Karpova, A. I. Boltalin, and Yu. M. Korenev, Zh. Neorg. Khim., 41, No. 7, 1185–1189 (1996).

    CAS  Google Scholar 

  2. E. V. Karpova, A. I. Boltalin, and Yu. M. Korenev, ibid., 43, No. 5, 796–799 (1998).

    CAS  Google Scholar 

  3. E. V. Karpova, A. I. Boltalin, Yu. M. Korenev, and S. I. Troyanov, Koordinats. Khim., 25, No. 1, 70–73 (1999).

    Google Scholar 

  4. M. A. Porai-Koshits, Itogi Nauki Tekhn., Kristallokhim., VINITI, Moscow, 15, 3–129 (1981).

    Google Scholar 

  5. T. C. W. Mak, W. H. Yip, C. H. L. Kennard, et al., Aust. J. Chem., 39, 541–546 (1986).

    CAS  Google Scholar 

  6. B. T. Usubaliev, E. M. Movsumov, I. R. Amiraslanov, et al., J. Struct. Chem., 22, No. 1, 73–77 (1981).

    Article  Google Scholar 

  7. R. G. Griffin, J. D. Ellett, Jr., M. Mehring, et al., J. Chem. Phys., 57, 2147–2155 (1972).

    Article  CAS  Google Scholar 

  8. S. E. Paramonov, E. V. Mychlo, S. I. Troyanov, and N. P. Kuzmina, Zh. Neorg. Khim., 45, No. 12, 2003–2008 (2000).

    CAS  Google Scholar 

  9. A. I. Boltalin, S. A. Kas’yanov, E. V. Karpova, and S. I. Troyanov, Koordinats. Khim., 30, No. 10, 736–741 (2004).

    Google Scholar 

  10. E. V. Karpova, Chemical Sciences Candidate’s Dissertation, Moscow State University, Moscow (2000).

    Google Scholar 

  11. S. K. Adams, D. A. Edwards, and R. Richards, Inorg. Chim. Acta, 12, 163–166 (1975).

    Article  CAS  Google Scholar 

  12. M. J. Baillie, D. H. Brown, K. C. Moss, and D. W. A. Sharp, J. Chem. Soc. A, 3110–3114 (1968).

  13. K. O. Christe and D. Naumann, Spectrochim. Acta, 29A, 2017–2024 (1973).

    CAS  Google Scholar 

  14. A. I. Boltalin, E. V. Karpova, Yu. M. Korenev, and V. A. Sipachev, J. Mol. Struct., 643, 161–169 (2002).

    Article  CAS  Google Scholar 

  15. K. Iijima, T. Itoh, and S. Shibata, J. Chem. Soc., Dalton Trans., 2555–2559 (1985).

  16. K. Iijima, J. I. Ohkawa, and S. Shibata, J. Mol. Struct., 158, 315–322 (1987).

    Article  CAS  Google Scholar 

  17. D. M. Kovtun, I. V. Kochikov, Z. G. Bazhanova, et al., Abstracts of Papers from the 21st Austin Symp. Molec. Struct., Univ. Texas, Austin, USA, March 4–7, 2006, p. 89.

    Google Scholar 

  18. D. A. Edwards and R. Richards, J. Chem. Soc., Dalton Trans., 2463 (1973).

  19. A. Kubo, R. Ikeda, J. A. Sampedra, et al., Bull. Chem. Soc. Jpn., 58, 2947–2950 (1985).

    Article  CAS  Google Scholar 

  20. R. D. Mounts, T. Ogura, and Q. Fernando, Inorg. Chem., 13, 802 (1974).

    Article  CAS  Google Scholar 

  21. Yu. I. Tarasov, I. V. Kochikov, N. Vogt, et al., J. Mol. Struct., 872, 150–165 (2008).

    Article  CAS  Google Scholar 

  22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, No. 11, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  23. A. A. Granovsky, PC GAMESS, version 7.0, http://classic.chem.msu.su/gran/gamess/index.html.

  24. A. Bergner, M. Dolg, W. Kuechle, et al., Mol. Phys., 80, 1431–1441 (1993).

    Article  CAS  Google Scholar 

  25. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem., 70, 612–630 (1992).

    Article  CAS  Google Scholar 

  26. G. A. Zhurko, ChemCraft Tool for Treatment of the Chemical Data, http://www.chemcraftprog.com.

  27. J. K. Badenhoop and F. Weinhold, Int. J. Quant. Chem., 72, 269–280 (1999).

    Article  CAS  Google Scholar 

  28. L. Goodman, V. Pophristic, and F. Weinhold, Acc. Chem. Res., 32, 983–993 (1999).

    Article  CAS  Google Scholar 

  29. K. S. Krasnov, N. V. Filippenko, V. A. Bobkova, et al. (eds.), Molecular Constants of Inorganic Compounds: Handbook [in Russian], Khimiya, Leningrad (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Tarasov.

Additional information

Original Russian Text Copyright © 2008 by Yu. I. Tarasov, Z. G. Bazhanova, D. M. Kovtun, A. I. Boltalin, B. K. Novosadov, and I. V. Kochikov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 2, pp. 221–229, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, Y.I., Bazhanova, Z.G., Kovtun, D.M. et al. Quantum-chemical study of the silver trifluoroacetate dimer. J Struct Chem 49, 207–215 (2008). https://doi.org/10.1007/s10947-008-0116-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-008-0116-2

Keywords

Navigation