Skip to main content
Log in

Structure and Optical Properties of High-Energy Nitrogen Clusters and Dimers on their Basis

  • Published:
Russian Physics Journal Aims and scope

The Raman, infrared, and visible/ultraviolet spectra of stable nitrogen clusters N4 and N6 are investigated within the framework of the density functional theory and the time-dependent density functional theory. Possible configurations of dimers in which two clusters are connected by the van der Waals forces or covalent bonds by means of molecular bridges are considered. It has been found that the most effective bridges are ions of light Mg and Be metals: the energy of their binding with nitrogen clusters lies in the range 2.67–4.74 eV. The spectra of dimers have been calculated, which makes it possible to detect their formation by spectrometric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Gimarc and M. Zhao, Coord. Chem. Rev., 158, 385–412 (1997).

    Article  Google Scholar 

  2. K. M. Dunn and K. Morokuma, J. Chem. Phys., 102, No. 12, 4904 (1995).

    Article  ADS  Google Scholar 

  3. R. Engelke and J. R. Stine, J. Phys. Chem., 94, No. 15, 5689–5694 (1990).

    Article  Google Scholar 

  4. M. L. Leininger, C. D. Sherrill, and H. F. Schaefer, J. Phys. Chem., 99, No. 8, 2324–2328 (1995).

    Article  Google Scholar 

  5. M. T. Nguyen, Coord. Chem. Rev., 244, Nos. 1–2, 93–113 (2003).

    Article  Google Scholar 

  6. L. Y. Bruney, T. M. Bledson, and D. L. Strout, Inorg. Chem., 42, No. 24, 8117–8120 (2003).

    Article  Google Scholar 

  7. D. L. Strout, J. Phys. Chem. A, 108, No. 49, 10911–10916 (2004).

    Article  Google Scholar 

  8. S. E. Sturdivant, F. A. Nelson, and D. L. Strout, J. Phys. Chem. A, 108, No. 34, 7087–7090 (2004).

    Article  Google Scholar 

  9. M. Tobita and R. J. Bartlett, J. Phys. Chem. A, 105, No. 16, 4107–4113 (2001).

    Article  Google Scholar 

  10. F. J. Owens, J. Mol. Struct. Theochem, 623, Nos. 1–3, 197–201 (2003).

    Article  Google Scholar 

  11. L. Gagliardi and G. Orlandi, J. Chem. Phys., 114, No. 24, 10733 (2001).

    Article  ADS  Google Scholar 

  12. T. K. Ha, O. Suleimenov, and M. T. Nguyen, Chem. Phys. Lett., 315, Nos. 5–6, 327–334 (1999).

    Article  ADS  Google Scholar 

  13. D. L. Strout, J. Phys. Chem. A, 108, No. 13, 2555–2558 (2004).

    Article  Google Scholar 

  14. L. J. Wang and M. Z. Zgierski, Chem. Phys. Lett., 376, Nos. 5–6, 698–703 (2003).

    Article  ADS  Google Scholar 

  15. H. Zhou, N.-B. Wong, G. Zhou, and A. Tian, J. Phys. Chem. A, 110, No. 10, 3845–3852 (2006).

    Article  Google Scholar 

  16. K. Grishakov, K. Katin, M. A. Gimaldinova, and M. Naslov, Lett. Mater., 9, No. 3, 366–369 (2019).

    Article  Google Scholar 

  17. Q. Guo, B. He, and H. Zhou, J. Mol. Graph. Model, 96, 107508 (2020).

    Article  Google Scholar 

  18. H. Zhou and N. B. Wong, Chem. Phys. Lett., 449, Nos. 4–6, 272–275 (2007).

    Article  ADS  Google Scholar 

  19. V. B. Merinov, J. Struct. Chem., 62, No. 5, 661–670 (2021).

    Article  Google Scholar 

  20. K. P. Katin, V. B. Merinov, A. I. Kochaev, et al., Computation, 8, No. 4, 91 (2020).

    Article  Google Scholar 

  21. T. Yildirim, P. M. Gehring, D. A. Neumann, et al., Carbon, 36, Nos. 5–6, 809–815 (1998).

    Article  Google Scholar 

  22. P. Liu, H. Cui, and G. W. Yang, Cryst. Growth Des., 8, No. 2, 581–586 (2008).

    Article  Google Scholar 

  23. N. N. Degtyarenko, K. P. Katin, and M. M. Maslov, Phys. Solid State, 56, No. 7, 1467–1471 (2014).

    Article  ADS  Google Scholar 

  24. K. P. Katin, M. B. Javan, A. I. Kochaev, et al., ChemistrySelect, 4, No. 33, 9659–9665 (2019).

    Article  Google Scholar 

  25. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids, 108, 82–87 (2017).

    Article  ADS  Google Scholar 

  26. M. A. Gimaldinova, M. M. Maslov, and K. P. Katin, CrystEngComm, 20, No. 30, 4336–4344 (2018).

    Article  Google Scholar 

  27. A. D. Becke, J. Chem. Phys., 98, No. 7, 5648 (1993).

    Article  ADS  Google Scholar 

  28. T. Lecklider, EE Eval. Eng., 50, No. 11, 36 (2011).

    Google Scholar 

  29. R.Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 72, No. 1, 650 (1980).

    Article  ADS  Google Scholar 

  30. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, No. 11, 1347–1363 (1993).

    Article  Google Scholar 

  31. T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett., 393, Nos. 1–3, 51–57 (2004).

    Article  ADS  Google Scholar 

  32. Chemcraft – graphical software for visualization of quantum chemistry computations [Electronic resource]; URL: https://www.chemcraftprog.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Merinov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 60–70, December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merinov, V.B. Structure and Optical Properties of High-Energy Nitrogen Clusters and Dimers on their Basis. Russ Phys J 65, 2109–2119 (2023). https://doi.org/10.1007/s11182-023-02879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02879-3

Keywords

Navigation