Skip to main content
Log in

Relaxation of STO-3G and 6-31G* basis set functions in the series of LiF isoelectronic molecules of second row elements

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The relaxation effect of functions of STO-3G and 6-31G* basis sets (BS) on their balance is considered in the series of LiF, BeO, BN, and C2 isoelectronic molecules. The values of parameters (exponential factors of basis functions, orbital exponents of Gaussian primitives, and contraction coefficients for the basis functions in molecules are found by the energy minimum criterion from unrestricted Hartree-Fock (UHF) calculations with a direct optimization of parameters: the simplex and Rosenbrock methods. Several optimization schemes differing in the number of parameters varied are performed. An important, from the practical viewpoint, relation between parameters of the basis functions of the sets in question is found through the mean values of Gaussian exponents. The relaxation effect on the variation of the total energy and relative errors in the calculations of interatomic distances, normal vibration frequencies, dissociation energies, and other properties of molecules are examined. The variation of the total energy upon the relaxation of STO-3G and 6-31G* basis functions (RBF) can achieve 1100 kJ/mole and 80 kJ/mole, respectively, and should be taken into account when evaluating energy characteristics, especially for the systems with high polar chemical bonds. The relaxation of STO-3G BS improves the description of molecular properties almost in all cases considered, whereas the relaxation of 6-31G* BS slightly affects its balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Mulliken, J. Chem. Phys., 36, No. 12, 3428–3439 (1962).

    Article  CAS  Google Scholar 

  2. S. Huzinaga, Comp. Phys. Rep., 2, 281–339 (1985).

    Article  Google Scholar 

  3. E. R. Davidson and D. Feller, Chem. Rev., 86, No. 4, 661–696 (1985).

    Google Scholar 

  4. K. Hashimoto and Y. Osamura, Canad. J. Chem., 70, 547–554 (1992).

    Article  CAS  Google Scholar 

  5. M. Urban, Collect. Czech. Chem. Communs., 38, No. 7, 2043–2053 (1973).

    CAS  Google Scholar 

  6. G. M. Loubriel and R. G. Selsby, Int. J. Quant. Chem., 8, No. 4, 547–557 (1974).

    Article  CAS  Google Scholar 

  7. R. A. Poirier, R. Daudel, et al., ibid., 18, No. 3, 715–725 (1980).

    Article  CAS  Google Scholar 

  8. R. A. Poirier, R. Daudel, and I. G. Csizmadia, ibid., 727–733.

  9. A. I. Ermakov and A. E. Merkulov, Zh. Strukt. Khim., 39, No. 4, 596–601 (1998).

    Google Scholar 

  10. R. L. Longo, Int. J. Quant. Chem., 75, Nos. 4/5, 585–591 (1999).

    Article  CAS  Google Scholar 

  11. A. I. Ermakov, A. E. Merkulov, et al., Zh. Strukt. Khim., 45, No. 6, 973–978 (2004).

    Google Scholar 

  12. A. I. Ermakov, A. E. Merkulov, et al., ibid., 979–985.

    Google Scholar 

  13. W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, No. 6, 2657–2664 (1969).

    Article  CAS  Google Scholar 

  14. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 28, No. 3, 213–222 (1973).

    Article  CAS  Google Scholar 

  15. W. U. Hehre, R. Ditchfleld, and J. A. Pople, J. Chem. Phys., 56, No. 5, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  16. J. D. Dill and J. A. Pople, ibid., 62, No. 7, 2921–2923 (1975).

    Article  ADS  CAS  Google Scholar 

  17. J. A. Binkley and J. A. Pople, ibid., 66, No. 2, 879/880 (1977).

    Article  ADS  Google Scholar 

  18. B. J. Lynch, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A, 107, No. 9, 1384–1388 (2003).

    Article  CAS  Google Scholar 

  19. A. E. Merkulov, A. I. Ermakov, and V. V. Belousov, Izv. TulGU. Ser. Khim., No. 4, 209–212 (2004).

  20. R. Krishnan, J. S. Binkley, et al., J. Chem. Phys., 72, No. 1, 650–654 (1980).

    Article  ADS  CAS  Google Scholar 

  21. K. S. Krasnov, N. V. Filippenko, V. A. Bobkova, et al., Molecular Constants of Inorganic Compounds: Hand-book [in Russian], K. S. Krasnov (ed.), Khimiya, Leningrad (1979).

    Google Scholar 

  22. S. S. Batsanov, Structural Chemistry. Facts and Dependences [in Russian], Dialog-MGU, Moscow (2000).

    Google Scholar 

  23. L. A. Gribov, Zh. Fiz. Khim., 79, No. 4, 688–692 (2005).

    Google Scholar 

  24. A. I. Ermakov, Zh. Strukt. Khim., 33, No. 4, 3–7 (1992).

    CAS  Google Scholar 

  25. J. A. Nelder and R. Mead, Comput. J., 7, No. 4, 308–313 (1965).

    Google Scholar 

  26. H. H. Rosenbrock, ibid., 3, No. 3, 175–184 (1960).

    Article  MathSciNet  Google Scholar 

  27. R. M. Lewis, V. Torczon, and M. W. Trosset, J. Comput. Appl. Math., 124, Nos. 1/2, 191–207 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. A. Granovskii, http://classic.chem.msu.su/gran/gamess/index.html.

  29. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, No. 11, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  30. V. V. Belousov, I. V. Yurova, and A. I. Ermakov, Data-Processing Technologies in Solutions of Fundamental and Applied Scientific Problems. DPTS-2005 Session. Collection of Materials [in Russian], Moscow (2005).

  31. D. A. Zhogolev and V. B. Volkov, Methods, Algorithms and Programs for Quantum Chemical Calculations of Molecules [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  32. M. V. Solodkova, A. V. Volkovich, et al., Rasplavy, No. 6, 42–50 (2004).

  33. R. S. Mulliken, J. Chem. Phys., 23, No. 10, 1833–1840 (1955).

    Article  CAS  Google Scholar 

  34. A. E. Reed, R. B. Weinstock, and F. Weinhold, ibid., 83, No. 2, 735–746 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2007 by A. I. Ermakov and V. V. Belousov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 1, pp. 12–21, January–February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakov, A.I., Belousov, V.V. Relaxation of STO-3G and 6-31G* basis set functions in the series of LiF isoelectronic molecules of second row elements. J Struct Chem 48, 6–15 (2007). https://doi.org/10.1007/s10947-007-0002-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0002-3

Keywords

Navigation