Skip to main content
Log in

Possibilities of Distributive Gaussian sp-Functions for Calculating the Correlation Energy of Molecules in the Ground and Excited States

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The possibilities of distributive bases from Gaussian sp-functions for calculating the correlation energy of molecules in the second order (Е(2)) of the Møller–Plesset perturbation theory (MPPT) have been investigated. The effectiveness of such bases has been demonstrated by comparing the Е(2) values obtained in distributive and standard atom-centered bases. Calculations have been performed for both the ground and excited states with ground symmetry. For this purpose, an analog of Møller–Plesset perturbation theory for excited states that preserves its advantages for the ground state has been developed. It has been shown that distributive sp-functions provide the accuracy of calculating Е(2) that is comparable to that of atom-centered bases including s-, p-, and d-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Feller and E. R. Davidson, Chem. Rev. 86, 681 (1986).

    Article  Google Scholar 

  2. P. M. W. Gill, Adv. Quant. Chem. 25, 141 (1994).

    Article  Google Scholar 

  3. T. Helgaker and P. R. Taylor, in Electronic Structure Theory, Part 2, Ed. by D. Yarkony (World Scientific, Singapore, 1995), p. 727.

    Google Scholar 

  4. G. A. Peterson and M. Braunstein, J. Chem. Phys. 83, 5129 (1985).

    Article  ADS  Google Scholar 

  5. D. Feller, J. Chem. Phys. 98, 7059 (1993).

    Article  ADS  Google Scholar 

  6. J. M. L. Martin and P. R. Taylor, J. Chem. Phys. 106, 8620 (1997).

    Article  ADS  Google Scholar 

  7. T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).

    Article  ADS  Google Scholar 

  8. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

    Article  ADS  Google Scholar 

  9. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).

    Article  ADS  Google Scholar 

  10. A. K. Wilson, T. van Mourik, and T. H. Dunning, Jr., J. Mol. Struct.: THEOCHEM 388, 339 (1996).

    Article  Google Scholar 

  11. F. Jensen, J. Chem. Phys. 110, 6601 (1999).

    Article  ADS  Google Scholar 

  12. P. Dahle, T. Helgaker, D. Jonsson, and P. R. Taylor, Phys. Chem. Chem. Phys. 9, 3112 (2007).

    Article  Google Scholar 

  13. E. A. Hylleraas, Z. Phys. 54, 29 (1929).

    Article  Google Scholar 

  14. H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

    Article  ADS  Google Scholar 

  15. W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).

    Article  ADS  Google Scholar 

  16. A. Preiskorn and W. Woznicki, Mol. Phys. 52, 1291 (1984).

    Article  ADS  Google Scholar 

  17. W. Cencek and J. Rychlewski, J. Chem. Phys. 98, 1252 (1994).

    Article  ADS  Google Scholar 

  18. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  ADS  Google Scholar 

  19. W. Klopper, F. R. Manby, S. Ten-No, and E. F. Valeev, Int. Rev. Phys. Chem. 25, 427 (2006).

    Article  Google Scholar 

  20. S. Battaglia, D. Bouet, A. Lecoq, S. Evangelisti, and N. Faginas-Lago, Mol. Phys. 118, e1615646 (2020).

    Article  ADS  Google Scholar 

  21. H. Karabulut, J. Phys. B: At. Mol. Opt. Phys. 37, 3103 (2004).

    Article  ADS  Google Scholar 

  22. I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).

    Article  ADS  Google Scholar 

  23. A. Sadlej, Chem. Phys. Lett. 47, 50 (1977).

    Article  ADS  Google Scholar 

  24. D. Moncrieff and S. Wilson, Mol. Phys. 80, 461 (1993).

    Article  ADS  Google Scholar 

  25. S. Wilson, Int. J. Quant. Chem. 66, 47 (1996).

    Article  Google Scholar 

  26. D. Moncrieff and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 26, 1605 (1993).

    Article  ADS  Google Scholar 

  27. V. N. Glushkov and S. Wilson, Int. J. Quant. Chem. 89, 237 (2002).

    Article  Google Scholar 

  28. V. N. Glushkov and S. Wilson, Int. J. Quant. Chem. 99, 903 (2004).

    Article  Google Scholar 

  29. J. Mackarewicz and V. N. Glushkov, Int. J. Quant. Chem. 102, 353 (2005).

    Article  ADS  Google Scholar 

  30. V. N. Glushkov, Opt. Spectrosc. 100, 807 (2006).

    Article  ADS  Google Scholar 

  31. D. Moncrieff and S. Wilson, Adv. Quant. Chem. 31, 157 (1999).

    Article  Google Scholar 

  32. S. Wilson, Electron Correlation in Molecules (Clarendon, Oxford, 1984).

    Google Scholar 

  33. V. N. Glushkov, Chem. Phys. Lett. 287, 189 (1998).

    Article  ADS  Google Scholar 

  34. V. N. Glushkov and X. Assfeld, Theor. Chem. Acc. 135, 3 (2016).

    Article  Google Scholar 

  35. V. N. Glushkov and X. Assfeld, J. Comp. Chem. 33, 2058 (2012).

    Article  Google Scholar 

  36. A. T. B. Gilbert, N. A. Besly, and P. M. W. Gill, J. Chem. Phys. A 312, 13164 (2008).

    Article  Google Scholar 

  37. V. N. Glushkov, J. Math. Chem. 31, 91 (2002).

    Article  MathSciNet  Google Scholar 

  38. V. N. Glushkov and X. Assfeld, J. Mol. Model. 25, 148 (2019).

    Article  Google Scholar 

  39. C. A. Baxter and D. B. Cook, Electron. J. Theor. Chem. 2, 66 (1997).

    Article  Google Scholar 

  40. V. N. Glushkov, J. Kobus, and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 41, 205102 (2008).

    Article  ADS  Google Scholar 

  41. G. Theodorakopoulos, I. D. Petsalakis, C. A. Nicolaides, and R. J. Buenker, J. Phys.: At. Mol. Phys. 20, 2339 (1987).

    ADS  Google Scholar 

  42. I. D. Petsalakis, G. Theodorakopoulos, C. A. Nicolaides, and R. J. Buenker, J. Phys.: At. Mol. Phys. 20, 5959 (1987).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Prof. S. Wilson for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Glushkov.

Ethics declarations

The author states that he has no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, V.N. Possibilities of Distributive Gaussian sp-Functions for Calculating the Correlation Energy of Molecules in the Ground and Excited States. Opt. Spectrosc. 129, 163–169 (2021). https://doi.org/10.1134/S0030400X21020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21020041

Keywords:

Navigation