Skip to main content
Log in

ZORA Gaussian basis sets for Fr, Ra, and Ac

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Segmented all-electron basis sets of double and triple zeta valence qualities plus polarization functions (DZP and TZP) for the elements Fr, Ra, and Ac to be used with the zeroth-order regular approximation (ZORA) were presented. These sets were constructed from the reoptimization of the contraction coefficients of the corresponding non-relativistic basis sets. In order to adequately describe electrons distant from the atomic nuclei, these sets were augmented with diffuse functions and were, respectively, designated as ADZP-ZORA and ATZP-ZORA. At the ZORA-B3LYP theory level, the relativistic sets were employed to calculate ionization energies of Fr, Ra, and Ac as well as bond lengths, dissociation energies, harmonic vibrational frequencies, and static mean dipole polarizabilities of some diatomics. Comparing with benchmark theoretical results and with experimental data available in the literature, it can be verified that our basis sets are able to produce reliable and accurate results. Evaluation of the performances of ZORA and second-order Douglas-Kroll-Hess Hamiltonians was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pyykkö P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563

    Article  Google Scholar 

  2. Zerner MC, Salahub D (1989) The challenge of d- and f-electrons. American Chemical Society, Washington

    Google Scholar 

  3. Kaltsoyannis N, Hay PJ, Li J (2006) Blaudeau, J.P., Bursten, B.E.: The chemistry of the actinide and transactinide elements. Morss LR, Edelstein N, Fuger J (Eds.), 3rd edn. Springer, Dordrecht 

  4. Dolg,M (2000) Effective core potentials. In Modern methods and algorithms of quantum chemistry. Grotendorst J (Ed.), 2nd edn. John von Neumann Institute for Computing. Jülich 3

  5. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Pseudopotential calculations of transition metal compounds: scope and limitations. Rev Comp Chem 8:63

    CAS  Google Scholar 

  6. Güell M, Luis JM, Solà M, Swart M (2008) Importance of the basis set for the spin-state energetics of iron complexes. J Phys Chem A 112:6384

    Article  Google Scholar 

  7. Vyboishchikov SF, Sierraalta A, Frenking G (1997) Topological analysis of electron density distribution taken from a pseudopotential calculation. J Comput Chem 18:416

    Article  CAS  Google Scholar 

  8. Cirera J, Ruiz E (2008) Exchange coupling in CuIIGdIII dinuclear complexes: a theoretical perspective. C R Chim 11:1227

    Article  CAS  Google Scholar 

  9. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (NY) 82:89

    Article  CAS  Google Scholar 

  10. Hess BA (1985) Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys Rev A 32:756

    Article  CAS  Google Scholar 

  11. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  12. Van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597

    Article  Google Scholar 

  13. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  Google Scholar 

  14. Barros CL, de Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965

    Article  CAS  Google Scholar 

  15. de Berrêdo RC, Jorge FE (2010) All-electron double zeta basis sets for platinum: estimating scalar relativistic effects on platinum(II) anticancer drugs. J Mol Struct THEOCHEM 961:107

    Article  Google Scholar 

  16. Canal Neto A, Jorge FE (2013) All-electron double zeta basis sets for the most fifth-row atoms:application in DFT spectroscopic constant calculations. Chem Phys Lett 582:158

    Article  CAS  Google Scholar 

  17. Campos CT, Jorge FE (2013) Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations. Mol Phys 111:167

    Article  CAS  Google Scholar 

  18. Martins LSC, Jorge FE, Machado SF (2015) All-electron segmented contraction basis sets of triple zeta valence quality for the fifth-row elements. Mol Phys 113:3578

    Article  CAS  Google Scholar 

  19. Baykova SV, Semenova AV, Presnukhinaa SI, Novikova AS, Shetnev AA, Boyarskiy VP (2022) Hydrogen vs halogen bonding in crystals of 2,5-dibromothiophene-3-carboxylic acid derivatives. J Mol Struct. 260:132785

    Article  Google Scholar 

  20. Grudova MV, Novikov AS, Kubasov AS, Khrustalev VN, Kirichuk AA, Nenajdenko VG, Tskhovrebov AG (2022) Aurophilic interactions in cationic three-coordinate gold(I) bipyridyl/isocyanide complex. Curr Comput-Aided Drug Des 12:613

    CAS  Google Scholar 

  21. Mironova AD, Mikhaylov MA, Maksimov AM, Brylev KA, Gushchin AL, Stass DV, Novikov AS, Eltsov IV, Abramov PA, Sokolov MN (2022) Phosphorescent complexes of {Mo6I8}4+ and {W6I8}4+ with perfluorinated aryl thiolates featuring unusual molecular structures. Eur J Inorg Chem 2022:e202100890

    Article  CAS  Google Scholar 

  22. De Almeida CA, Pinto LPNM, dos Santos HF, Paschoal DFS (2021) Vibrational frequencies and intramolecular force constants for cisplatin: assessing the role of the platinum basis set and relativistic efects. J Mol Model 27:322

    Article  Google Scholar 

  23. Roos BO, Veryazov V, Widmark P-O (2004) Relativistic atomic natural orbital type basis sets for the alcaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor Chem Acc 111:345

    Article  CAS  Google Scholar 

  24. Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) New relativistic ANO basis sets for actinide atoms. Chem Phys Lett 409:295

    Article  CAS  Google Scholar 

  25. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931

    Article  Google Scholar 

  26. Hill JG, Peterson KA (2017) Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements. J Chem Phys. 147:244106

    Article  Google Scholar 

  27. Feng R, Peterson KA (2017) Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. J Chem Phys. 147:084108

    Article  Google Scholar 

  28. Campos CT, de Oliveira AZ, Ferreira IB, Jorge FE, Martins LSC (2017) Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac. Chem Phys Lett 675:1

    Article  CAS  Google Scholar 

  29. Pantazis DA, Neese F (2011) All-electron scalar relativistic basis sets for the actinides. J Chem Theory Comput 7:677

    Article  CAS  Google Scholar 

  30. Canal Neto A, de Oliveira AZ, Jorge FE, Camiletti GG (2021) ZORA all-electron double zeta basis sets for the elements from H to Xe: application in atomic and molecular property calculations. J Mol Model 27:232

    Article  Google Scholar 

  31. Centoducatte R, de Oliveira AZ, Jorge FE, Camiletti GG (2022) ZORA double zeta basis sets for fifth row elements: application in studies of electronic structures of atoms and molecules. Comput Theor Chem 1207:113511

    Article  CAS  Google Scholar 

  32. Canal Neto A, Ferreira IB, Jorge FE, de Oliveira AZ (2021) All-electron triple zeta basis sets for ZORA calculations: application in studies of atoms and molecules. Chem Phys Lett 771:138548

    Article  CAS  Google Scholar 

  33. Jorge FE, Canal Neto A (2020) A new method for optimizing a set of nonlinear parameters: application in total Hartree-Fock atomic energy calculations. Theor Chem Acc 139:76

    Article  CAS  Google Scholar 

  34. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73

    Article  CAS  Google Scholar 

  35. de Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas-Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas-Kroll contracted basis sets. J Chem Phys 114:48

    Article  Google Scholar 

  36. Kramida A, Ralchenko Yu, Reader J, and NIST ASD Team (2021) NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd [2022, July 25]. National Institute of Standards and Technology, Gaithersburg, MD 

  37. Lim IS, Schwerdtfeger P, Söhnel T, Stoll H (2005) Ground-state properties and static dipole polarizabilities of the álcali dimers from to ( = 0, +1). from scalar relativistic pseudopotential coupled cluster and density functional studies. J Chem Phys 122:134307

    Article  Google Scholar 

  38. Hong G, Dolg M, Li L (2001) A comparison of scalar-relativistic ZORA and DKH density functional schemes: monohydrides, monooxides and monofluorides of La, Lu. Ac and Lr Chem Phys Lett 334:396

    Article  CAS  Google Scholar 

  39. Küchle W, Dolg M, Stoll H (1997) Ab initio study of the lanthanide and actinide contraction. J Phys Chem A 101:7128

    Article  Google Scholar 

  40. Laerdahl JK, Faegri K, Visscher L, Saue T (1998) A fully relativistic Dirac–Hartree–Fock and second-order Möller-Plesset study of the lanthanide and actinide contraction. J Chem Phys 109:10806

    Article  CAS  Google Scholar 

  41. Konings RJM, Beneš O, Kovács A, Manara D, Sedmidubský D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E (2014) The thermodynamic properties of the f-elements and their compounds Part. 2. The lanthanide and actinide oxides. J Phys Chem Ref Data 43:013101

    Article  Google Scholar 

Download references

Funding

We would like to acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian Agency).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Francisco Elias Jorge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, A.C., Jorge, F.E. & Gomes, T. ZORA Gaussian basis sets for Fr, Ra, and Ac. J Mol Model 28, 334 (2022). https://doi.org/10.1007/s00894-022-05331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05331-4

Keywords

Navigation