Skip to main content
Log in

Correlation between structure and spectral characteristics of rhodium(I) chelate dicarbonyl complexes and their electron

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical Hartree-Fock, MP2 and density functional (SVWN, BLYP, B3LYP) computations have been first made to calculate the equilibrium geometry and vibration frequencies of CO rhodium(I) chelate dicarbonyl complexes with monocharged bidentate ligands like β-diketonate R1COCHCOR2, iminoketonate R1COCHC(NH)R2, and β-diiminate R1C(NH)CHC(NH)R2 with substituents at carbon atoms R1, R2 = H, CH3, CF3. Consideration of electron correlation was shown to be especially important for the reasonable representation of bond distances with metal atom and CO vibration frequencies. The MP2 computation of exchange-correlation effects, as compared to density functional technique, results in a better description of frequency difference of symmetrical and asymmetrical modes of CO vibrations: inaccuracy in Δν(CO) description recedes from 12–16 cm−1 to 4 cm−1. The dependence between electron density distribution in complexes and spectral characteristics of terminal carbonyl groups was traced. Alteration of CO vibration frequencies was interpreted in terms of electron density shift from occupied d-orbitals of the metal to π*-orbitals of carbonyl groups. Population of CO π *-orbitals increases and CO vibration frequencies decrease on lessening of the electronegativity of donor atoms of a chelate ligand when passing on from oxygen to nitrogen and further among the substituents R CF3>H>CH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Masters, Homogeneous Transition-Metal Catalysis:A Gentle Art, Chapman&Hall, London (1981).

    Google Scholar 

  2. A. M. Trzeciak and J. J. Ziolkowski, Coord. Chem. Rev., 190-192, 883–900 (1999).

    Article  CAS  Google Scholar 

  3. F. P. Pruchnik, P. Smolenski, and K. Wajda-Hermanowicz, J. Organomet. Chem., 570, 63–69 (1998).

    Article  CAS  Google Scholar 

  4. H. Miessner, I. Burkhardt, D. Gutschick, et al., J. Chem. Soc., Faraday Trans. 1, 85, 2113–2126 (1989).

    Article  CAS  Google Scholar 

  5. W. Simanko, K. Mereiter, R. Schmid, et al., J. Organomet. Chem., 602, 59–64 (2000).

    Article  CAS  Google Scholar 

  6. G. J. J. Steyn, A. Roodt, I. Poletaeva, and Yu. S. Varshavsky, ibid., 536/537, 197–205 (1997).

    Article  CAS  Google Scholar 

  7. A. M. Trzeciak and J. J. Ziolkowski, Inorg. Chem., 96, 15–20 (1985).

    CAS  Google Scholar 

  8. A. I. Rubaylo, N. I. Pavlenko, Yu. S. Varshavsky, and T. G. Cherkasova, Rhodium Express, No. 12, 27–31 (1995).

  9. A. I. Rubaylo, N. I. Pavlenko, and V. P. Selina, ibid., No. 5, 23–26 (1994).

  10. A. I. Rubaylo, V. P. Selina, T. G. Cherkasova, and Yu. S. Varshavskii, Koordinats. Khim., 17, No. 4, 530–536 (1991).

    Google Scholar 

  11. Yu. S. Varshavskii, M. M. Singh, and N. A. Busina, Zh. Neorg. Khim., 16, No. 5, 1372–1376 (1971).

    CAS  Google Scholar 

  12. T. G. Cherkasova, L. V. Osetrova, and Yu. S. Varshavsky, Rhodium Express, No. 1, 8–13 (1993).

  13. M. R. Galding, T. G. Cherkasova, L. V. Osetrova, and Yu. S. Varshavsky, ibid., 14–17.

  14. E. A. Ivanova, Ph. Gisdakis, V. A. Nasluzov, et al., Organometallics, 20, No. 6, 1161–1174 (2001).

    Article  CAS  Google Scholar 

  15. R. J. Harrison, J. A. Nichols, T. P. Straatsma, et al., NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.0 (2000), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.

    Google Scholar 

  16. A. D. Becke, J. Chem. Phys., 98, 5648–5655 (1993).

    Article  CAS  Google Scholar 

  17. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B., 37, 785–793 (1988).

    Article  CAS  Google Scholar 

  18. J. C. Slater, The Self-Consistent Field for Molecules and Solids: Quantum Theory of Molecules and Solids, V. 4, McGraw-Hill, New York (1974).

    Google Scholar 

  19. S. J. Vosko, L. Wilk, and M. Nusair, Canad. J. Phys., 58, 1200 (1980).

    Article  CAS  Google Scholar 

  20. A. D. Becke, J. Chem. Phys., 88, 3098 (1988).

    Google Scholar 

  21. R. Dithfield, W. J. Hehre, and J. A. Pople, ibid., 54, No. 4, 724–728 (1971).

    Article  Google Scholar 

  22. W. J. Hehre, R. Dithfield, and J. A. Pople, ibid., 56, No. 7, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  23. P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta, 28, No. 2, 213–222 (1973).

    Article  CAS  Google Scholar 

  24. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82, 284–298 (1985).

    Article  CAS  Google Scholar 

  25. W. R. Wadt and P. J. Hay, ibid., 299–310.

  26. M. D. Halls, J. Velkovski, and H. B. Schlegel, Theor. Chem. Acc., 105, No. 6, 413–421 (2001).

    Article  CAS  Google Scholar 

  27. A. E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983).

    Article  CAS  Google Scholar 

  28. A. E. Reed, R. B. Weinstock, and F. Weinhold, ibid., 83, 735 (1985).

    Article  CAS  Google Scholar 

  29. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980).

    Article  CAS  Google Scholar 

  30. Yu. S. Varshavsky, M. R. Galding, T. G. Cherkasova, et al., J. Organomet. Chem., 628, 195–210 (2001).

    Article  CAS  Google Scholar 

  31. A. J. Gordon and R. A. Ford, The Chemist’s Companion, Wiley, New York (1972).

    Google Scholar 

  32. M. L. McKee and S. D. Worley, J. Phys. Chem., 101, 5600–5603 (1997).

    CAS  Google Scholar 

  33. D. Steele and P. F. M. Verhoeven, Vib. Spectroscop., 25, 29–39 (2001).

    Article  CAS  Google Scholar 

  34. F. Huq and A. Skapski, J. Mol. Struct., 4, 411 (1974).

    Article  CAS  Google Scholar 

  35. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612 (1993).

    Article  CAS  Google Scholar 

  36. A. A. Ravdel and A. M. Ponomareva, Abriged Reference-Book of Physical Chemical Values, Khimiya, Leningrad (1983).

    Google Scholar 

  37. H. Wang, E. Miki, S. Re, and H. Tokiwa, Inorg. Chim. Acta, 340, 119–126 (2002).

    Article  CAS  Google Scholar 

  38. A. Veillard, Chem. Rev., 91, No 5, 743–766 (1991).

    Article  CAS  Google Scholar 

  39. J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., Phys. Rev. B., 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  40. P. Ziesche, S. Kurth, and J. P. Perdew, Comp. Mater. Sci., 11, 122–127 (1998).

    Article  Google Scholar 

  41. E. A. Salter, A. Wierzbicki, J. M. Seminario, et al., J. Phys. Chem., 98, No. 49, 12945–12948 (1994).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by E. A. Shor, A. M. Shor, V. A. Nasluzov, and A. I. Rubaylo

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No.2, pp. 228–237, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shor, E.A., Shor, A.M., Nasluzov, V.A. et al. Correlation between structure and spectral characteristics of rhodium(I) chelate dicarbonyl complexes and their electron. J Struct Chem 46, 220–229 (2005). https://doi.org/10.1007/s10947-006-0034-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0034-0

Keywords

Navigation